在理解新的,但同时是旧的建议方面取得了巨大进展。实际上,在最后一轮中针对候选人[4,23]的一些突破性的隐性结果敦促NIST为数字签名开放一个额外的回合[1],期望在签名和关键大小之间实现潜在的硬性问题和比率的更多多样性。在这一额外的一轮中,NIST表示他们希望选择具有较小签名和不基于结构化晶格的快速验证的方案。适合描述的直接候选者是基于UOV [19]的多元签名,其本质上具有很小的签名。这些缺点是他们通常拥有巨大的公共钥匙,并且不能保证建筑的安全性。在频谱的另一端,是沉重但可证明的菲亚尔·沙米尔(Fiat-Shamir)签名。在几年的过程中,由于通用签名大小的巨大改进,他们从极低效率低下到合理的标准化候选人。现在,根据菲亚特 - 沙米尔范式,在额外的回合中有超过12个候选人。其中三个,Meds [11],Alteq [22]和更少的[3]使用Goldreich,Micali和Wigderson的GMWσ-Protocol [17],最初是在图均等概率上提出的,但可以从任何难题的问题中构成。例如,MEDS使用矩阵代码等价问题,其中对象是ma-trix代码,而等效性是双向的双向指行使线性变换。alteq使用一般线性群的交替的三连线形式等效性,但现在起作用在三个“侧面”上。最后,少量使用lin- ear code等效性,其中对象是锤击代码和等价缩放排列的。在所有这些方案中,异构体是在签名中编码的,并且典型地构成了其中的大多数。找到同量法的紧凑表示形式,因此直接影响签名的大小。在本文中,我们的目标是更有效地编码异构体,同时保持对其他性能指标(公共密钥大小和计算性能)的影响。
我们的项目旨在实现这些想法:改善安全性:我们的项目通过给机器人更好的感官和平衡来使危险环境更安全,从而降低了人工工人的风险。对人类的风险较小:随着我们的升级,人类不必再做危险的任务了。机器人承担风险,确保人们的安全。更容易的遥控器:我们的项目使操作员可以从远处控制机器人,因此他们可以在危险的地方完成工作时保持安全。
在这项研究中,除了世界各地的风力涡轮机技术的最新进展和趋势外,土耳其安装的商业风力涡轮机技术的进步也得到了彻底检查。在这方面,已经在2011年至2019年至2019年之间获得了几个用于安装的风力涡轮机,包括涡轮数,安装功率(MW),平均额定能力(MW),平均转子直径(M),平均特定功率容量(M 2)和平均轮毂高度(M 2)和平均轮毂高度(M)。根据获得的结果,土耳其年度安装的风力涡轮机的平均额定能力从2011年的1.86兆瓦升至2019年的3.52兆瓦。然而,年度安装的风曲线的平均特定功率从423.7 W/m 2下降到314.1 W/m 2。结果表明,特定功率的大小和减少的增长导致了更高的功率输出的趋势,而风力涡轮机能力因子和发电能力在土耳其的上升。随着时间的推移,带直径较大的风力涡轮机开始显示在陆地上更容易观察到。为此,在选择位点选择过程中调节涡轮可见性的建议解决方案是潜在的可见性模型(PVM),该模型应用作辅助变量。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 3 月 21 日发布。;https://doi.org/10.1101/2023.08.19.553999 doi:bioRxiv 预印本
虽然共形预测因子在其频率上获得了严格的统计保证的好处,但其相应的预测集的大小对其实际利用而言至关重要。不幸的是,目前缺乏有限样本分析,并保证了其预测设置尺寸。为了解决这一短缺,我们从理论上量化了在分裂的共形预测框架下的预测集的预期大小。由于通常无法直接计算此精确的形式,我们进一步得出了可以在经验上计算的点估计和高概率间隔边界,从而提供了一种表征预期设置大小的实用方法。我们通过在现实世界数据集上实验回归和分类问题来证实结果的功效。
抽象的紫外线辐射(UVGI)和臭氧消毒是在高风险环境中缓解病原微生物的空气传播的关键方法,尤其是在呼吸道病毒病原体(如SARS-COV-2和Avian Infiean Infuenza inflienza and Avian inf uenza)中的出现。这项研究定量研究了紫外线和臭氧对生物溶质溶质中大肠杆菌生存能力的影响,特别关注大肠杆菌的生存能力如何依赖于生物溶质醇的大小,这是一个关键因素,它是确定人类静止性系统和bioaerosolols进化环境中沉积模式的关键因素。本研究使用了一个受控的小型实验室,在整个暴露时间(2 - 6 s)中,将大肠杆菌悬浮液燃烧并持有不同水平的UVGI和臭氧水平。由于暴露时间从2到6 s增加,并且在使用uvgi和ozone和ozone(65 - 131 ppb)时,发现大肠杆菌的归一化生存力显着降低了。我们还发现,与较大的尺寸(0.5 - 2.5μm)相比,UVGI降低了生物溶质中大肠杆菌的归一化活力(0.25 - 0.5μm)。然而,当组合紫外线和臭氧时,对于较小的粒径,归一化的活力高于较大的粒径。这些发现为有效的UVGI消毒工程方法的发展提供了见解,以控制高风险环境中致病性微生物的传播。通过理解微生物在各种生物质量大小中的生存能力的影响,我们可以优化紫外线和臭氧技术,以降低病原体的空气传播的潜在风险。
信念和态度构成了关于气候变化的公众舆论的核心。网络分析可以揭示这些信念和态度的结构配置。在这项研究中,我们取代了一个信念系统框架,以确定关键的心理因素,跟踪这些信仰体系的密度随着时间的流逝和整个政治群体的密度变化,并分析美国政治群体内部和政治群体之间信仰体系的结构异质性。从2010年到2021年(n = 16,742)的15个国家代表性调查数据浪潮,我们的发现表明,担心气候变化是最中心的媒介元素。有趣的是,我们发现,在政治上没有亲属的人中,心理因素之间的联系随着时间的推移而加强,这意味着该群体中信仰体系的一致性增加了。尽管对共和党人和民主党人之间气候变化的信念具有政治极化,但我们的发现表明,与其他群体相比,这两个群体组织和构造气候变化信念的方式并没有明显不同。这些发现为气候变化专家和传播者提供了理论和实用的见解。
医学莱比锡,德国,2024年3月5日 - ISO 13485认证的MedTech公司Bellaseno GmbH使用增材制造技术开发可再吸收的脚手座,今天宣布,汉诺威医学院的一支小组,由汉诺威医学院,诊所外科手术的诊所,由Med. Medic博士领导。Philipp Mommsen成功地使用了Bellaseno生产的定制的,可吸收的骨替换支架,以重建由于创伤性枪伤而导致的三度开放感染裂缝后,径向轴的14 cm节骨缺陷。在汉诺威医学院接受治疗之前,该患者接受了11项手术,并进行了软组织和骨质清理术,以获得次级伤口闭合,而径向骨折仅通过环固定器稳定。在进行了六项进一步手术和全身性抗生素治疗以实现手术领域的细菌性治疗后,在汉诺威医学院使用Bellaseno的可分离脚手架进行了骨骼重建手术,并结合了自体骨移植物,该骨骨移植物的髓质骨骼腔。脚手架基于Rasomer®,这是Evonik开发的可生物降解聚合物平台。手术成功了,三个月后,患者表现出及时的骨整合,并且具有足够的肘部功能,没有任何伤口愈合障碍的迹象。此外,没有更多的感染临床迹象。案例研究发表在本月的个性化医学杂志上。脚手架是由贝拉塞诺(Bellaseno)设计的定制笼子,可与患者的解剖结构完美匹配,并确保在大空隙中安全地固定自动骨移植(RIA材料)。通过在重建手术期间定位动脉静脉环或中央血管椎弓根来实现适当的内部血管化,其中包括某些设计特征,以允许将这种脆弱的结构放置在支架内。脚手架是由Bellaseno的专有AI驱动的增材制造设施以所谓的无触摸方法制造的。由具有基本和锁定部分的内部和外部支撑框架组成的笼子由完全可生物可吸收的,高质量的GMP级Resomer®Polycoprolactone(MPCL)制成,并提供骨导导特性。在手术期间,小组决定使用血管椎弓根来确保立即进行内部血管形成,并固定并固定
摘要:过去已经研究了细菌的生长和行为,但是尽管对无数过程的影响,包括生物膜形成,但对船员健康的影响很少,但几乎没有将重点引向细胞大小。分析了在国际空间站(ISS)上培养在不同材料和媒体上培养的铜绿假单胞菌的特征上清液等分试样,作为太空生物膜项目的一部分。在该实验中,铜绿假单胞菌是在微重力的(与地球对照匹配的)中生长的,在改良的人工尿液培养基(Maumg-high Pi)或补充了KNO 3的LB Lennox中,并评估了其在六种不同材料上的生物膜形成。在孵育一二,两天和三天后,ISS船员通过固定在多聚甲醛中终止了实验的子集,并在此处介绍了上清液的等分试样进行浮游细胞尺寸研究。通过在油浸入下的相对造影显微镜,moticam 10+数码相机和斐济图像分析程序下使用相对造影显微镜,获得了飞行后的测量。统计比较,以确定使用Kruskal – Wallis和Dunn检验的哪些治疗方法在细胞尺寸上产生了显着差异。在LBK和Maumg-High Pi中,培养物中存在的材料存在统计学上的显着差异。与此一起,数据还按重力条件,培养基和孵育天数分组。总而言之,在微重力上生长的培养物上观察到较小的细胞,并且细胞大小随孵育时间的函数和培养物的生长而变化。在微重力中培养的浮游细胞的比较显示细胞长度降低(根据材料,从4%到10%)和直径(根据材料,根据材料的1%到10%)就其匹配的地球对照组而言,需要注意的是,在给定时间,培养物可能在其生长曲线上可能在不同的生长曲线上处于不同的位置。我们在此处描述了这些变化,以及在机组人员健康和潜在应用方面对人类太空旅行的可能影响。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月20日发布。 https://doi.org/10.1101/2023.11.21.568055 doi:Biorxiv Preprint