摘要:全球导航卫星系统反射测量 (GNSS-R) 仪器的测高性能取决于接收器的带宽和信噪比 (SNR)。测高延迟通常根据直接信号波形的峰值与反射信号波形导数的最大值之间的时间差计算得出。机载微波干涉反射仪 (MIR) 在澳大利亚和塔斯马尼亚之间的巴斯海峡收集的双频数据表明,这种方法仅适用于平坦表面和大带宽接收器。这项工作分析了使用 GNSS-R 计算测高可观测量的不同方法。一种提出的新方法,窄带代码(例如 L1 C/A)的 3 次导数的峰值到最小值 (P-Min3D) 和大带宽代码(例如 L5 或 E5a 代码)的峰值到半功率 (P-HP) 在使用真实数据时表现出更好的性能。这两种方法也与峰峰值 (P-P) 和一阶导数峰峰值 (P-Max1D) 方法进行了比较。这些方法之间的主要区别在于确定反射信号波形中的延迟位置以计算高度可观测量。比较不同方法、波段和 GNSS-R 处理技术的机载实验结果表明,可以实现厘米级精度。
通过提供高源级、高动态范围和大带宽,可确保卓越的性能。结合了各种分析工具来支持目标分类。主动操作可以在 ODT(全向)或 RDT(定向)模式下进行,可以将传输和接收限制在一个扇区内。电子光束稳定和传输倾斜功能可补偿船舶的移动。重点关注的是声纳对鱼雷的探测能力,以及“主动被动”操作能力。自动鱼雷警告功能在后台持续工作,并自动为即将来临的鱼雷生成鱼雷警报。为了自卫,声纳能够探测小型移动水下物体和系泊水雷。
摘要—大带宽体声波 (BAW) 滤波器是第五代 (5G) 通信系统的迫切需求。在这项研究中,我们在多层氧化物薄膜上制备了 43 ◦ Y 切割铌酸锂 (LN) 单晶薄膜,并成功实现了带氧化物布拉格反射器 (BR) 的体声波滤波器。介绍了滤波器的设计方法和制造工艺。利用原子力显微镜 (AFM) 和扫描电子显微镜 (SEM) 来表征薄膜的质量。结果证明了将单晶薄膜转移到多层氧化物上的可行性,这对于限制声能是有效的。该谐振器的有效机电耦合系数为 14.6%,品质因数 (FOM) 为 32.94。该滤波器尺寸紧凑,为600 μ m×400 μ m,在中心频率为3.128 GHz时相对带宽为10.3%,有望应用于5G系统。
光谱应用的特征是将高光谱分辨率与大带宽相结合的持续努力。这两个方面之间通常存在权衡,但是超级分辨光谱技术的最新发展正在为这一领域带来新的机会。这与所有需要紧凑和具有成本效益的仪器(例如在感应,质量控制,环境监测或生物识别验证)中等待的所有应用尤其重要。这些非常规的方法利用了稀疏采样,人工智能或后处理重建算法等概念来利用光谱调查的几种策略。从这个角度来看,我们讨论了这些方法的主要优点和劣势,并追踪了未来的进一步发展和广泛采用的未来方向。
摘要 锁模激光器发出的短脉冲可以产生无背景的原子荧光,因为它允许瞬时偶发散射与随后的原子发射在时间上分离。我们利用这一点将光频和电子搁置离子阱量子比特的量子态检测提高了两个数量级以上。然而,对于原子超精细结构上定义的量子比特的直接检测,短脉冲的大带宽大于超精细分裂,并且重复激发不是量子比特状态选择性的。在这里,我们表明,通过将相干控制技术应用于被查询离子的轨道价电子,可以恢复超精细量子比特的投影量子测量所需的状态分辨率。我们展示了电子波包干涉,即使在存在大量背景激光散射的情况下,也可以使用宽带脉冲读出原始量子比特状态。
使用场效应晶体管 (FET) 来探索具有传输测量的原子级薄磁性半导体是困难的,因为大多数 2D 磁性半导体的极窄带会导致载流子局域化,从而阻止晶体管工作。本文表明,CrPS 4 的剥离层(一种带宽接近 1 eV 的 2D 层状反铁磁半导体)可以实现在低温下正常工作的 FET。使用这些设备,可以测量电导率作为温度和磁场的函数,以确定完整的磁相图,其中包括自旋翻转和自旋翻转相。确定了磁导率,它在很大程度上取决于栅极电压。在电子传导阈值附近达到高达 5000% 的值。尽管研究中使用的 CrPS 4 多层厚度相对较大,但栅极电压还可以调整磁态。结果表明,需要采用具有足够大带宽的二维磁性半导体来实现正常运行的晶体管,并确定一种候选材料来实现完全栅极可调的半金属导体。
摘要。高性能子伏电流镜被广泛用于构建混合模式低功率VLSI系统。电流镜的性能取决于其关键参数,其中包括较大的操作范围,低输入合规性电压,宽秋千,大带宽以及非常低的输入和非常高的输出电阻。在本文中,显示了高性能低功率电流镜的设计。所提出的电流镜基于电压跟随器,使电流镜在低压下工作。为改善输入输出电阻,提出的电流镜由超级晶体管和超级cascode阶段使用。在微电瓦范围内的功率耗散时,直到1mA达到了最小误差的当前镜像。所达到的带宽为2.1 GHz,低输入和高输出电阻分别为0.407 ohm和50 giga ohm。在本文中还显示了过程角,温度分析和提议的电流镜的噪声分析。使用0.18 UM技术的HSPICE以0.5 V的双电源电压进行完整分析。
电容性微机械超声传感器(CMUT)技术在过去十年中一直在迅速发展。在制造和集成方面的进步,再加上改进的建模,使CMUT能够进入主流超声成像。与常规技术相比,CMUT超声传感器传达了许多优势,例如大带宽和效率[1],[2],易于制造大型阵列和较低的成本。CMUT是一种高电场设备,通过通过充电和分解等问题来控制高电场,可以具有具有优越的带宽和敏感性的超声传感器,可以与电子设备集成并使用传统的集成电路制造技术制造,并具有所有优势。可以使CMUT设备灵活地包裹在圆柱体甚至人体组织上,并且由于使用Su-8 [3],[4],[8]或Polyirimide [5],[8],所有这些都可能使所有这些可能。在本文中,我们介绍了两种具有基本重要性的电介质材料的电气表征,以制造具有提及的特征的设备:氧化硅(SIO 2)在电荷注入和击穿方面对高电场具有出色的响应,以及具有优化且具有优化结构和
由于技术进步,当前世界对ADC有各种应用,从RF和无线通信到生物应用。要将实际世界的模拟信号与数字系统联系起来,需要对数字转换器的模拟。(ADCS)。由于技术创新,在现代世界中,ADC有许多用途,从RF和无线通信到生物应用。其他ADC类型包括连续的近似,Flash和Sigma-Delta。LAN接口,数字采样和雷达接收器是使用Flash ADC的应用程序的一些示例。一种被称为数字转换的类似物的电气过程将电压值的范围限制为预定水平。Flash ADC适用于由于其快速速度而需要非常大带宽的应用。为了实现并行处理,使用了一系列比较器,从而增加了功耗。它用于雷达,数字示波器,高密度盘驱动器,物联网应用,通信系统和其他设备。必须减少对数字转换器的闪存类似物的功耗才能具有功能性通信系统。速度,功耗,潜伏期和面积是ADC的四个主要设计参数。Flash ADC的最关键组成部分是其比较器。对于n位闪存ADC,2N-1电压比较器同时比较一个模拟输入信号与参考值0