太赫兹 (THz) 波因其大带宽和丰富的光谱资源在成像、传感和通信方面表现出良好的应用前景,尤其在下一代无线通信中。用于操纵 THz 波的调制器和波导正在成为开发相关技术的关键部件,其中超材料分别在控制自由空间和片上传播方面表现出非凡的性能。在本综述中,我们将简要概述当前有源超器件和拓扑光子晶体的进展,以了解太赫兹自由空间调制器和片上波导的应用。在第一部分中,我们将通过将超材料与各种有源介质相结合来讨论有源太赫兹超器件的最新研究进展。在第二部分中,我们将介绍光子拓扑绝缘的基本原理,其中拓扑光子晶体是一个新兴的研究领域,将推动片上太赫兹通信的发展。我们设想,它们的结合将在更先进的太赫兹应用中找到巨大的潜力,例如可重构拓扑波导和拓扑保护的元设备。
5G通信具有高速率、大容量、大带宽等优异性能,应用于电力物联网的终端海量测量和精准控制(陈等,2019;惠等,2020)。然而,由于5G网络技术的更新和基站部署更加密集(吴等,2021),基站功耗急剧上升,5G基站满负荷功耗接近4kW,约为4G基站的3倍(韩等,2021),这加大了通信运营商面临的电力支出压力。此外,铅酸电池的替换和5G基站的建设将带来大量锂电池需求(唐等,2020),而基站电池仅作为备用电源,对通信运营商来说投资成本高,储能利用率低。目前已开展了基站能耗管理和节能技术研究,通过提高功率放大器效率(Quaglia and Cripps,2018;Cappello et al.,2019)、关闭部分信道、深度休眠空闲基站(Pervaiz et al.,2018;Wu et al.,2020;Alnoman and Anpalagan,2021)等方式降低能耗,但现有研究并未充分利用基站的后备储能电池和可再生能源。因此,本研究综合考虑可再生能源配置、储能电池可调性及通信负荷时空特性,提出可再生能源辅助5G基站群与智能电网互动的分层分布式运营框架,有利于促进各类能源灵活转换,协助基站运营商降低开支、创造利润。
摘要 随着对大带宽的需求呈指数级增长,考虑最佳网络平台以及通信网络中信息的安全性和隐私性非常重要。高载波频率的毫米波和太赫兹被提议作为通过提供超宽带信号来克服现有通信系统香农信道容量限制的使能技术。毫米波和太赫兹还能够建立与光通信系统兼容的无线链路。然而,大多数能够在这些频率范围(100 GHz-10 THz)下合理高效运行的固态元件,尤其是源和探测器,都需要低温冷却,这是大多数量子系统的要求。本文展示了当源和探测器在低至 T = 4 K 的低温下运行时,可以实现安全的毫米波和 THz 量子密钥分发 (QKD)。我们比较了单输入单输出和多输入多输出 (MIMO) 连续变量 THz 量子密钥分发 (CVQKD) 方案,并找到了 f = 100 GHz 和 1 THz 之间的频率范围内的正密钥速率。此外,我们发现最大传输距离可以延长,密钥速率可以在较低温度下提高,并且通过使用 1024 × 1024 根天线,在 f = 100 GHz 和 T = 4 K 时实现超过 5 公里的最大秘密通信距离。我们的结果首次展示了毫米波和太赫兹 MIMO CVQKD 在系统运行温度低于 T = 50 K 下的可能性,这可能有助于开发下一代安全无线通信系统和量子互联网,用于从卫星间和深空到室内和短距离通信的应用。
光频梳(OFC)是一种基于激光的技术,具有转化的计量学,可以以未经先验的精度实现时间和频率测量。超出了其最初的目的,OFC已在基本科学和新兴技术的各个领域采用,例如Au sosos驾驶和无线通信。然而,目前以高度重复速率产生低噪声OFC来源的挑战,具有较高的光学带宽阻碍了其全部潜力。为了应对这些挑战,非线性光纤中的超智能(SC)生成是一种有吸引力的方法,因为它可以在相对较低的泵功率下提供大带宽,但以噪声扩增为代价。本论文探讨了产生基于低噪声SC的OFC来源的新方法,以满足这些新型范围的不断增长的需求。第一个提出的解决方案是一种混合纤维,结合了两种SC生成制度的最佳品质。使用此纤维,可以将超低噪声纤维SC覆盖,覆盖930–2130 nm范围,相位相干性接近统一,频谱分辨出相对强度噪声(RIN)低至0。05%,平均0。01%在750 nm的带宽上,接近接近泵激光噪声的理论极限。这项工作的第二个重要结果是开发了一种新的数值方法,能够模拟在非线性纤维中传播的整个超快脉冲列车并研究其噪声性能的演变。最后,引入了空心核纤维,是达到新的SC制度(包括深紫外线和TW峰值功率)的一种有希望的方法。We use this model to corroborate and explain measurements of unprecedented low noise observed on a dual-comb SC source, including shot-noise-limited SC generation and up to 20 dB of RIN suppression.
Brillouin光学机电硅光子学电路Brillouin散射是一种非线性光学现象,基于光与结构的机械模式之间的相互作用。Brillouin散射允许生成新的光学频率,并且对于产生超稳定的微波信号或Opto-Microwave转换而引起了极大的兴趣。光力学或光学模式与机械模式之间的耦合最近在硅光子学界中引起了很多关注,其想法是受益于高容量和低成本制造技术[1-4]。然而,在硅光子学中常用的硅在绝缘子指南中自然没有机械模式的良好限制,而锗则可以同时提供良好的光学和机械模式限制[5]。在近年来,在我们的小组中,与Politecnico di Milano合作,在我们的小组中已经开发了GE-GE-GE-GE-GE-Chige Photonics。第一件作品主要针对接近IR范围的电流设备,利用GE量子井结构[6]。最近证明,可以在MID-IR的大波长范围内使用分级的索引sige波导,并且已经获得了包括MACH ZEHNDER干涉仪或集成谐振器的大量无源建筑集团[7]。然后,基于Sige波导的非线性光学效应[8]的芯片上大带宽光源的演示,而光电设备(调制器和光电探测器)的实现最近完成了PhotoNics平台[9]。研究活动将包括:在这种情况下,这项工作的目的是研究硅胶结构的锗,这似乎有望同时限制光学和机械模式。在这种情况下,博士学位项目的目标是研究和开发布里鲁因光学机械的新型平台,依靠Sige Waveguides对Si底物进行。将采用不同的策略来实现同时的机械和光学限制,并根据研究发现将开发创新的设备。
摘要 本文将介绍 SatixFy 为再生处理器有效载荷设计的 SDR ASIC,并从技术和商业角度介绍在现代 UHTS 和 LEO 星座中使用再生处理器的理由。与基本的弯管设计相比,再生有效载荷可提供更高的性能、更低的延迟、支持网状连接、简化非 GEO 星座的实施以及更好的可用性。另一方面,它可能需要更多的机载处理能力并保证面向未来的设计。即确保在卫星的整个生命周期内支持用户所需的通信协议。随着能够在上下行链路方向支持大带宽的软件定义无线电 ASIC 的引入,面向未来的再生有效载荷的实现比以往任何时候都更接近。本文将介绍 Satixfy 为有效载荷设计的 SDR ASIC,包括设计的抗辐射方面。 1. 简介 现代卫星系统,如 LEO 星座和 GEO UHTS,有望实现更高的容量和更低的每 Mbps 成本。然而,这些成本在多个方面需要以不同于过去的系统的方式解决。用户和网关之间要传输的大量信息对网关成本、位置、GEO 和 LEO 星座的效率提出了挑战。本文表明,再生式机载处理有效载荷提供了一种良好的解决方案,而现代硅片和通信技术可以缓解未来防护和功耗等问题。 2. 网关链路和相关挑战 现代 UHTS 卫星和 LEO 星座将以 1Tbps 数量级的速率向用户提供数据服务。网关大小取决于网关链路预算。如 [3] 和表 1 所示,典型的弯管 GEO 前向链路计划在波束峰值上提供 2.6 b/Hz,在峰值 ~9.5dB 时在波束 @ Es/No 上提供 2 b/Hz 平均值。返回链路较差,通常为 ~1-1.5 b/Hz(平均为 1.2b/Hz)。在 LEO 情况下,也采取类似的假设,考虑到由于卫星往返远程用户的移动而导致的更大动态范围变化。在弯管实施的情况下,GW 链路的效率与用户链路相同,平均为 2 b/Hz。在这样的弯管系统中,GW 链路效率与用户链路相同,GW 容量受 Ka 或 Q/V 频段的总带宽可用性限制。1Tbps 卫星将需要 500 GHz 的总 GW 容量。在 Ka 频段使用 2.5 GHz 和 2 个极化将需要 100 个独立的 GW 位置。对于回传信道,载波通常基于 MF-TDMA,大小为 1-10MHz。假设 1:4(现代网络比率)需要 250Gbps 的回传链路。使用平均 5MHz 载波会产生 (@1.2b/Hz, 20% RO) 50,000 个载波。在 LEO 弯管的情况下,复杂性会增加,因为您需要为全球每个覆盖兴趣区在卫星视线范围内设置一个 GW。当覆盖 AERO 和海上路径时,这要求在海洋中设置 GW 位置和相关回程。
