根据短期稳定性参数和静态纵向杆稳定性的设计标准,确定俯仰力矩特性中水平稳定器的设计和尺寸的目标值(单位为 teffilS)。研究了 Cooper Harper 等级 (CHR) 与短期特性之间的关系以及俯仰力矩斜率与短期特性之间的关系。发现,如果整个机身的俯仰力矩斜率为负,则短期响应的 CHR 将小于 3 V。对于静态纵向杆稳定性,确定由于 Oryx 和本次演习中要设计的飞机具有相同的旋翼系统和相同位置的水平稳定器,因此如果俯仰力矩斜率与攻角曲线相似,则静态纵向杆稳定性将相似。
传感器为每个测量参数生成数据。在某些情况下,直升机上已经安装了适当的传感器(例如发动机参数传感器、雷达高度计等),我们选择直接与该传感器接口以获取所需的信号。在其他情况下,安装专用传感器(例如飞行员控制位置传感器、攻角和侧滑传感器等)来测量感兴趣的参数。信号调节电路将每个传感器的各种输出(例如电压、频率、电阻等)转换为与 DAS 中的模拟到数字转换器兼容的直流电压。每个信号调节电路都设计有高输入阻抗,以防止传感器信号的负载并保持 DAS 和直升机之间的隔离。
如上所述,设计任务是在二维包络线上进行的,但是,需要考虑涵盖飞机攻角的第三维,以解决气动非线性和控制面配平能力的影响。此外,还需要考虑质量、惯性和重心变化的影响。需要将局部控制器设计集成在一起以覆盖飞行包络线。这通常可以通过使用增益调度来产生一组控制律来令人满意地实现。调度飞行控制律增益所需的信息通常来自空中数据系统,其中一个例子如图 5 所示。这包括一组适当位置的外部探头,用于提供皮托和静压以及局部气流测量(速度和方向)[7]。
近年来的技术和科学发展,提出了新的方法和控制设计来描述和改进飞机的动力学、控制和稳定性。在这种情况下,战斗机在战斗情况下的行为至关重要,因为该系统在更接近其极限区域的情况下运行,并且要处理更高的速度和各种各样的攻角。对于 [1] ,由于作用于系统的许多力,例如阻力和升力以及空气层的方向及其与所选参考的关系,飞机的动力学自然是非线性的。因此,忽略非线性方面可能会限制系统代表性模型及其电子控制器的能力。根据 [2] ,对于更现实的模型,必须考虑固有的非线性和不确定性,以避免不稳定的运行区域,从而实现更高效和更现实的控制项目。
摘要 – 风洞升级 Capstone 小组被要求为俄亥俄北方大学校园内的 Aerolab™ 教育风洞设计一个数据采集和控制系统。该项目的目的是提高从风洞获取的数据的准确性。这将减少学生在实验中出现的实验误差。风扇上将增加一个电机控制器。一旦达到所需速度,这将有助于通过减少风速波动来提高数据准确性。更精确的系统还将增加风洞用于新研究的实用性。该系统必须能够测量空气速度、压力、轴向力和法向力以及攻角。使用当前的数据采集方法,所有测量值都会大幅波动。
您的任务是找到一个有意隐藏在脆弱的Web应用程序中的秘密标志。该应用程序托管在Docker机器中,您必须在本地设置和部署Docker机器以运行Web应用程序。设置环境后,您必须执行一系列攻击,利用应用程序中的一系列漏洞来定位和捕获隐藏的标志。进行攻击时,您应该分别识别和记录每个漏洞,并详细说明利用它们所采取的步骤以及它们如何在攻击链中进步。最后,您必须提供一份全面的报告,包括对所确定的漏洞的逐步分解,如何将它们链在一起以及清楚地解释您如何成功地在应用程序中找到隐藏的标志。
在非常不同的情况下需要解决不同潜在的对手,对有效核威慑的要求有所不同。威慑取决于否认对手在攻击中寻求目标的能力,以及在任何情况下都能造成无法忍受的成本的能力。但是,美国不能依靠对手来感知在所有情况下可信的大规模核反应的威胁。因此,为了增强美国核威慑和扩展威慑的信誉,美国将继续赋予一系列核和非核能力,这些核能和非核能力为美国领导人提供可以定制的选择,以阻止潜在的对手,确保盟友和伙伴,实现美国的目标,应消除美国的目标,并反对不确定的未来。
在双体船船体滑行问题上,从采用 Mercury 双体船(最适合滑行)的船体到采用深切船体的船体,很多人都不同意 Walter Bloemhard 等人的观点,这让我很生气。与此同时,在我们有更明确的证据(例如来自试验水箱的证据)之前,我们必须同意持不同意见,届时我们中的一些人将不得不改变意见。然而,对许多人来说,“滑行”仅仅意味着阻力突然减小和速度加快,如果这是他们的定义,那么双体船就可以滑行。但这不是技术定义,“滑行”是指水粒子以攻角撞击船底产生的动态升力,无论阻力是否突然减小或速度是否加快。