热带森林树木的表征仅限于基于现场的技术,该技术侧重于测量树干圆柱形部分的直径,在测量形状不规则的大树以及其他尺寸属性(例如树的总高度和树冠大小)时存在很大的不确定性。在这里,我们介绍了一种将激光雷达点云数据分解为与单个树冠 (ITC) 相对应的 3D 簇的方法,该方法可以估计热带森林的许多生物物理变量,例如树高、树冠面积、树冠体积和树木数量密度。使用在巴拿马巴罗科罗拉多岛 50 公顷热带森林科学中心 (CTFS) 地块上收集的机载高分辨率激光雷达数据测试了基于 ITC 的方法。由于缺乏现场树高和树冠大小测量,因此无法直接验证 ITC 指标。我们通过比较使用地面和激光雷达单株树木测量值在多个空间尺度(即 1 公顷、2.25 公顷、4 公顷和 6.25 公顷)上估算的地上生物量 (AGB) 来评估我们方法的可靠性。我们研究了四种不同的激光雷达得出的 AGB 模型,其中三种基于单株树木高度、树冠体积和树冠面积,一种使用激光雷达冠层高度模型在地块水平计算平均树冠高度 (TCH)。结果表明,所有基于 ITC 大小和 TCH 的模型的预测能力都随着空间分辨率的降低而增加,从最差模型在 1 公顷时的 16.9% 到最佳模型在 6.25 公顷时的 5.0%。除了在更高的空间尺度(~4 公顷)下以及由于与树冠相关的边缘效应而导致的误差减少外,基于 TCH 的模型表现略好于基于 ITC 的模型。与根据森林类型和结构异速生长而区域性变化的 TCH 模型不同,基于 ITC 的模型是根据单个树木异速生长而得出的,可以扩展到全球所有热带森林。激光雷达检测单个树冠大小的方法克服了地面清查的一些局限性,例如 1) 它能够接触大树的树冠;2) 它能够评估大片和人迹罕至地区的树木密度、树冠结构和森林动态的方向变化,从而支持稳健的热带生态研究。© 2016 Elsevier Inc. 保留所有权利。
热带森林树木的特性测量仅限于实地技术,主要测量树干圆柱形部分的直径,在测量形状不规则的大树以及其他尺寸属性(例如树总高和树冠大小)时存在很大的不确定性。在这里,我们介绍了一种将激光雷达点云数据分解为与单个树冠 (ITC) 相对应的 3D 聚类的方法,该方法可以估算热带森林的许多生物物理变量,如树高、树冠面积、树冠体积和树木数量密度。使用在巴拿马巴罗科罗拉多岛 50 公顷热带森林科学中心 (CTFS) 地块上收集的机载高分辨率激光雷达数据测试了基于 ITC 的方法。由于缺乏实地树高和树冠大小测量,因此无法直接验证 ITC 指标。我们通过比较使用地面和激光雷达单株树木测量值在多个空间尺度(即 1 公顷、2.25 公顷、4 公顷和 6.25 公顷)上估算的地上生物量 (AGB) 来评估我们方法的可靠性。我们研究了四种不同的激光雷达得出的 AGB 模型,其中三种基于单株树木的高度、树冠体积和树冠面积,一种使用激光雷达树冠高度模型在样地水平上计算平均树冠高度 (TCH)。结果表明,所有基于 ITC 大小和 TCH 的模型的预测能力随着空间分辨率的降低而增加,最差的模型在 1 公顷时为 16.9%
促进了令人兴奋的自然之旅。Raghu博士是附近研究实验室的科学家,Maniram Chacha是附近社区的老年人。Maniram Chacha是模仿鸟类电话的专家。他也擅长识别各种动植物。为了为自然行走做准备,Raghu博士告诉学生,这一步行的目的是体验自然界中动植物的美和多样性。学生很高兴加入他们。他们很好奇地互动并向他们学习。老师建议学生携带笔记本,笔和水瓶。走路时,他们开始探索周围的动植物。Raghu博士建议学生注意公园中各种各样的气味,并强调尊重所有生物并观察它们而不会令人不安。Maniram Chacha告诉学生不仅观察不同的动植物,而且还要仔细聆听不同的声音。学生遇到了各种植物,包括草,灌木丛和大树。他们还观察到坐在树枝上的各种鸟,蝴蝶从花朵到花,猴子从一棵树跳到另一棵树。他们在笔记本上记录了他们的观察结果,并与Raghu博士和Maniram Chacha进行了讨论。学生可以听到鸟儿的鸣叫。Raghu博士告诉他们,每只鸟都有独特的chir。这是自然多样性的一个例子。Raghu博士要求Maniram Chacha模仿一些鸟类。Maniram Chacha模仿不同的鸟类呼唤。学生热情地开始复制他。您是否曾经观察过周围不同的动植物?与您的朋友和老师分享并讨论您的观察结果。
森林地上生物量 (AGB)。传统上,树高由测高仪测量,该测高仪广泛用于验证地面激光扫描仪 (TLS) 和机载激光雷达 (ALS)。然而,与 TLS 和 ALS 相比,测高仪的测量结果存在很大的不确定性。与高度测量相关的误差会传递到 AGB 估计模型中,并最终降低估计的 AGB 和随后的碳储量的准确性。在本文中,我们测试了在热带低地雨林中使用测高仪、TLS 和 ALS 来测量高度 (H) 和胸高 (DBH),并以机载激光雷达为基准,在高度测量中具有高精度和保真度。结果表明,当使用机载 LiDAR 作为基准来验证实地测量和 TLS 时,测高仪测量的实地高度低估了树高,均方根误差 (RMSE) 为 3.11,而 TLS 低估了树高,RMSE 为 1.61。由于高度测量结果存在显著差异,AGB 和碳储量也存在显著差异,实地测量值为 146.33 和 68.77 Mg,TLS 值为 170.86 和 80.31 Mg,机载 LiDAR 值为 179.85 和 84.53 Mg。以机载激光雷达测量结果为最准确,实地测量的地上生物量和碳储量占机载激光雷达总地上生物量和碳储量估计值的85.55%。同时,TLS测量结果反映了以机载激光雷达数据为基准的95.02%的地上生物量和碳储量。结果表明,与小树相比,大树的高度测量存在巨大的不确定性,差异显著。结论是,地上生物量和碳储量对各种测量树高方法得出的高度测量误差很敏感,树木的大小也是如此。
摘要 太阳能树是一种融入太阳能技术的结构,就像树枝一样。太阳能树旨在强调太阳能技术的愿景,该项目的主要目标是引起人们对利用清洁能源的可能性的关注,清洁能源是我们日常生活中的重要方面之一,因为手机已成为不可或缺的元素,因此为手机充电同样重要。鉴于智能手机电池耗尽的速度很快,充电器已成为我们包中最必不可少的物品之一。我们到处旅行都带着它,没有它就活不下去,但当我们在没有电的地方或在长途旅行中没有时间找地方充电时,它总是让我们陷入困境。由于手机和日益恶化的能源问题,我们不得不想出给手机充电和运行低容量设备的方法。这不再局限于思考,而是付诸实践。由于当今时代对艺术和技术方面的重视,太阳能树的形状是经过特别选择的。这个概念的产生是因为树木可以利用阳光进行一种称为“光合作用”的过程,这有助于维持生态系统。太阳能电池以一种可以根据太阳光线入射的角度调整方向的方式固定在树枝上,该结构模仿树枝,逆变器将电池输出电压改变为电池充电所需的量。为了保持这些部件的正确形状,它们被放置在一个代表树根的盒子里。因此,我们有一个便携式充电器,可以在一天中的任何时间使用清洁的可再生能源。此外,这棵树尽可能靠近窗户,以接收尽可能多的阳光。该设计可以以道路和公共区域上的一棵大树的形式实现,以增加美感——手机、笔记本电脑和运行低容量设备。
在内华达山脉的加利福尼亚州美国河流域恢复了弹性的森林结构,可通过增加的森林碳和易于市场的生物量利用途径来产生每英亩6,100美元的碳收入,这可能会完全资助森林管理。采用动态性能基准(DPB)框架,本研究通过森林变薄,然后是开处方的火灾对恢复对高风险森林的韧性的影响。这些做法显示出初始的碳成本,但最终减少了野火的碳排放量并增加了碳存储,与无治疗的反事实情况相比,平均每英亩35 TCO 2 E的碳排放量增加了35 TCO 2 E,而市场就绪的生物量利用途径增加了另外6-23 TCO 2 E平均每英亩平均收益。治疗方法通过将碳存储从茂密,人满为患的小树转移到更多分散的,耐火的大树并使火灾后的火力严重程度(火焰长度)降低78%五年后,可以增强碳稳定性。与预处理水平相比,治疗使景观中的树木数量减少了74%,而在25年模拟结束时,碳存储量增加了6%。为了将投资者的风险降低到基于自然的解决方案中,重点是提高火灾森林中的碳稳定性并从燃料处理中产生碳收入,需要准确的预测工具。为了最大程度地确定碳效益,景观水平处理,DPB和前碳信贷的确定性至关重要。本研究表明,传统市场或新颖的碳贡献计划的碳收入可以帮助缩小加利福尼亚州森林修复的资金差距,同时强调需要创新的保护融资机制来支持生态系统的弹性和气候缓解目标。
半充气的躲避球击中脸部比露尼想象的要疼得多。老师们从体育馆后台门口爬出来。两个青少年互相扔球。其他高中戏剧系的学生围着他们,欢呼雀跃。两人像野兽一样争夺迷路露营者的花生酱罐子。泰勒捡起孩子们扔给她的十几个球中的一个,狠狠地扔向露尼的脸。露尼后退了一步,用舌头感觉到自己被打破的嘴唇,尝到了血和薄荷润唇膏的味道。“你是个精神病患者泰勒!”“我才是精神病患者?”泰勒尖叫道。她长长的黑发遮住了眼睛,她咬紧牙关,愤怒地盯着露尼。“你怎么能这样?”“这是个意外!我不是故意给你讲错独白的!”露尼看着本克斯先生和桑德斯太太走近,把他们拉开。“你是故意的!这就是为什么没人喜欢你这个疯子!你这个被放到最底下的玉米糖!!你最终会和一个不在乎你的失败者在一起。我信任你!我读了你在所有人面前发表的整段独白。我要给你看一条死鲨鱼,你这个开罗的紫玫瑰!!”泰勒还没来得及投出最后一个球,老师们就赶来把两个女孩分开。泰勒继续战斗。桑德斯夫人竭力把她拉回来。“我想要那个角色!你嫉妒是因为我选了剧本而不是你。”泰勒说。“是的,”露妮大声说道,而不是在心里默念。露妮看着本克斯先生放开她,和桑德斯夫人一起护送泰勒离开。她眼里噙满了泪水。“我希望你失败,这样你就得和我一起出去玩了。”她低声说。“我最好再也见不到你!”泰勒尖叫道。她希望回到泰勒不停谈论的那个沿海城市。她向她展示了自己拍摄的快照。一张是海滩上的阳光,一张是公园中央的一棵大树,还有一只猫头鹰在 101 号公路中间行走。从这些照片,以及当 Luni 和 Taylor 自驾游到那里时,她发现自己陷入了爱河。她不确定这份爱是什么,也不知道这份爱放在哪里。她不想去想这些。只有能和 Taylor 亲近的想法才是最重要的。现在没有希望了。她一点一点地意识到
安珀·弗朗西斯·弗雷泽·麦肯齐 露西·吉恩·弗里泽尔 藤原大树 杰克·菲利普·戈登 米娅·莉莉·格兰特 奥利维亚·帕特里夏·格雷 查理·哈维·格雷 郭明轩 比利·马丁·古茨拉格 乔治亚·简·海格 克洛伊·杰恩·汉密尔顿 朱莉娅·罗斯·汉密尔顿 艾丽莎·罗斯·科琳·哈里森 艾米·妮可 凯瑟琳·哈特利 阿萨纳西亚 安妮塔·齐尔齐拉基斯·海 本杰明·乔尔·哈兹尔伍德 尼古拉斯·亚历山大·希利 露西尔·安妮 希瑟 比阿特丽斯·理查兹·赫塞尔 卡莱布·詹姆斯·希尔 贾斯汀·威廉·欣德尔 爱丽丝·罗斯·霍华德 卢埃拉·梅·豪 佩文·黄·麦肯齐 大卫·亨特 瑞安·布莱尔·约翰斯顿 泰拉·伊莎贝尔·基恩 萨曼莎·简·罗斯·基勒 加布里埃拉·耿 艾萨克·乔治·莱斯特 李月仪 林业俊 凯特琳·伊丽莎白·洛斯 杰克·贝齐安 卢俊勋爵 斯凯拉·夏洛特·安妮·卢德曼 罗比·维雷穆 彼得·麦克格雷戈 利亚姆·弗莱彻·梅特兰安妮卡 凯瑟琳·霍尔特 马里纳 杰德·弗朗西斯卡·马修斯-万登 乔治·杰森·梅弗 瑞莉·玛丽·梅 本杰明·道格拉斯·麦考尔 艾丽卡·妮可 亚历山大·麦克迪亚米德 安格斯·巴纳比 哈米什·麦克格雷戈 查理·麦基恩 锡耶纳 杰德·麦克莱恩·哈里森 布莱克·麦克米兰
博士学位机会 - 美国森林对气候变化的反应,佛罗里达大学这个博士学位机会将于2025年秋季开始,将利用国家规模的美国森林库存和分析(FIA)数据库,还可能包括现场工作。主管:Jeremy Lichstein(https://people.clas.ufl.edu/jlichstein/)背景:多个因素可能会影响森林动态的趋势,包括大气二氧化碳,气候变化和营养限制的浓度上升。这些因素可能通过生理机制直接影响森林的生长和死亡率,以及通过物种组成的转移间接影响森林的生长和死亡率。随着国家规模数据的空间和时间覆盖范围继续有所改善,因此有机会更好地表征和了解森林动态的变化。然而,多个全球变化驱动因素与美国森林的复杂干扰历史之间的相互作用对将变化归因于不同机制构成了重大挑战。应对这些挑战需要创造性的建模方法。我们最近的论文(doi.org/10.1073/pnas.2311132121)说明了我们项目正在追求的研究类型。详细信息:该博士职位与一个由USDA资助的项目相关,用于研究美国森林的碳动态。该项目旨在提高我们对近几十年来美国森林动态如何以及为什么发生变化的理解。我们有兴趣更好地了解跨生活阶段(幼苗,树苗和大树)的碳动态和人口统计学。在这个广泛的框架内,博士生将制定与他们的特定利益相符的问题。学费和津贴(每年32,500美元,每年3%的生活成本增加)最多五年,包括两个学期的TA支持和长达四年的RA支持。开始日期:2025年8月15日秋季学期(左右)。潜在的学位课程包括UF自然资源与环境学院(https://snre.ifas.ufl.edu/;应用程序截止日期截止日期为2025年2月1日)和UF生物学系(https://biology.ufl.edu/;应用程序截止日期为12月1日1日,2024年12月1日)。如果您有兴趣申请,请在2024年10月15日左右与Jeremy Lichstein(jlichstein@ufl.edu)联系,并提供以下预订材料: - 求职信,以解释您对职位和相关经验的兴趣。- 简历。- 三个参考的联系信息。- 您对该职位的任何问题。这种非正式的预签名没有严格的截止日期,旨在:(1)帮助确定此职位是否适合您,并且(2)帮助您考虑如何攻读博士学位,这将增强您随后的正式申请。如果您决定前进,也需要对上述一个或两个程序的正式申请。
执行摘要 Tanahu Hydropower Limited (THL) 是尼泊尔电力局 (NEA) 的子公司,成立于 2012 年,旨在开发 140 兆瓦的 Tanahu 水电项目(“该项目”)(原名 Upper Seti 水电项目)。该项目位于加德满都以西 150 公里处的 Seti 河上,靠近尼泊尔第 4 省甘达基区 Tanahu 区 Damauli。该项目覆盖该地区的 Vyas 和 Bhimad 市以及 Rising 和 Myagde 乡镇。政府于 2009 年 8 月批准了水力发电系统的环境影响评估 (EIA),并于 2010 年 6 月批准了塞蒂(达马乌利)-巴拉特普尔沿线 220 kV 输电线路的初步环境审查 (IEE)。此外,水电补充环境影响评估和输电线路补充 IEE 分别于 2017 年 10 月 13 日和 2017 年 10 月 8 日获得批准,其中包括项目名称、发电容量、森林数据以及输电线路长度和位置的变更。该项目仍处于施工前阶段。一些前期施工活动正在进行中,例如建设通道、营地设施和施工电源变电站。通道的物理进度已完成约 95%(从 RCC 桥到发电站的 3.3 公里通道和从 Chapaghat 到大坝工地的 3.2 公里通道)。营地设施:截至 2017 年 12 月,已完成约 68% 的物理进度。施工电力变电站:施工电力的 33/11 kV 变电站已基本完工。约 98% 的实体工程已经完成。根据三套 EIA 报告(EIA 2009、附录 2012 和补充 EIA 2017),编制了一份更新的环境管理计划草案。THL 已成立环境与社会管理部门 (ESMU) 来协调项目中的整体环境与社会保障活动,包括实施环境与社会保障计划以及监测项目中的合规性。THL 一直与相关政府机构跟进,为主要施工工程提供许可。在本报告期间,正在进行以下活动:森林和土壤保护部 (MoFSC) 于 2017 年 9 月 11 日批准了森林面积。对于进一步的流程,THL 与林业部于 2017 年 11 月 1 日 (2074-07-15 BS) 达成协议。政府/社区森林的总损失面积为 417.23 公顷。25 个社区森林将砍伐 22,453 棵大树、67735 棵高杆树和 91383 棵幼树,用于水库、发电厂、通道和项目设施(总计 181571 棵)。土地征用和补偿:在 570 个受影响家庭(HH)中,448 个家庭已获得补偿。同样,在 86 个实际搬迁的家庭中,64 个家庭已获得补偿。迄今为止支付的总补偿金额约为 9.8 亿卢比。根据 EIA 和更新的 EMP,环境监测计划已更新。报告期内,基线监测和合规监测在水质采样、森林和野生动物调查、渔业调查、下游敏感性调查等方面取得了进展。水质:已对河水进行采样,以进行基线监测和分析。水样采集自项目区域的 7 个不同位置。采样站沿塞蒂河从拟建水库上游到发电站下游的河段设置。一个采样站位于马迪河。