摘要:本文介绍了配备两个升降副翼和一个电动机的小型无人机的飞行故障检测和基本重构。考虑的故障场景是直线平飞期间一个控制面卡在给定位置。故障检测采用多模型自适应估计解决,考虑无故障和故障(左或右表面卡住)系统模型。基本重构是为了稳定飞行免受大气干扰,在横向通道中应用剩余表面,并采用总能量控制概念将空速和高度保持在纵向通道中可接受的限度之间。在软件在环仿真中,故障检测和重构取得了令人满意的结果。
[…]指出,在上一个日历年中采取的措施解决了有关即将到来的飓风季节和其他大气干扰,包括可能影响该岛电气系统的洪水。同样,在[PrepA]的设施和机构发生大火的情况下,所述报告也应介绍采用的计划或方案。还应包括地震时鉴定出用于保护电力线的任何预防措施。该报告应包括但不限于以下信息:i。改进[PrepA]修订后的经营计划,该计划因大气干扰而进行; ii。制定紧急计划以面对可能的地震; iii。在[Prepa]设施和机构发生火灾时,采用计划或方案; iv。树木修剪程序的状态是为了保护电力传输线,同时保护我们的树木并防止它们损坏; v。执行电气系统关闭的决策协议; vi。提供给[PrepA]必不可少的人员的培训,以便在大气骚乱,[Prepa]设施或场所或地震中发生射击以及认证证明所有在操作领域的所有人员表现良好职能的人都在经过紧急情况下的所有人员绩效均已适当地建议操作性的操作计划,并证明所有在操作领域的人员表现;和vii。应急计划计划在暴风雨,飓风,[Prepa]设施或场所的火灾或地震中解决情况,该局势旨在尽快使电气系统正常化或重建电气系统。
功能•过滤,稳定和可靠的电压:在线技术上的双转换(VFI符合IEC 62040-3),并用过滤器抑制大气干扰; •高超负荷能力(最高150%)•恢复电源时可编程的自动启动; •启动电池(冷启动); •功率因数校正(UPS输入功率因数,接近1); •无电池干预的宽输入电压公差范围(从140 V到276 V); •运行时可扩展长达几个小时; •使用UPS工具配置软件完全配置; •高度可靠的电池(自动和手动激活的电池测试); •高水平的UPS可靠性(总微处理器控制); •对主电脑的影响低(正弦体占用)。
LIDAR设施的长期常规测量非常有效。测量数据的分析允许开发大气参数的经验模型;确定其季节性,准两年和其他定期变化周期;研究确定所测量参数之间的动态和相关性的原因;在自然和人为因素的作用下检测缓慢变化的短期大气干扰,最后,检测大气变化中趋势的检测和预测,并估计了它们对可能气候变化的影响。西伯利亚激光雷达站(SLS)是在V.E.创建的独特大气天文台。ZUEV大气光学研究所。它在Tomsk(56.5°N,85.0°E)中运行,并结合了用于远程激光的最新仪器和气溶胶和云场的被动声音,空气温度和湿度,以及臭氧环的臭氧和气态组件。除了控制广泛的大气参数外,天文台还允许同时监视整个有价值的高度范围0-75 km的大气。
由于现代传感器系统的技术改进,飞机、卫星和无人机 (UAV) 等高空飞行平台上生成的数据量不断增加。由此产生的对机载和空间平台更高数据速率的需求推动了过去几年飞机和卫星激光通信终端的发展。德国航空航天中心通信与导航研究所在开发自由空间光学 (FSO) 终端方面有着成功的记录,这些终端可用于飞行平台,如平流层气球、飞机和小型卫星,以便实时将数据从移动平台传输到地面。除了 FSO 的高数据速率和针对射频 (RF) 干扰的安全传输通道等优势外,直接视线也是成功链接的必要条件。传统的 RF 通信更加稳健,受大气干扰或天气条件的影响较小。因此,新的系统概念已经开发出来,以受益于 FSO 提供的高数据速率和 RF 通信技术的可靠性。作为这一趋势的一部分,DLR 已经开发并展示了一种能够克服大气杂散效应的混合 FSO/RF 通信系统。本文概述了 DLR 目前的研究和发展,目标是结合 FSO 和 RF 通信的优势。它讨论了不同平台上可能的实施概念,并介绍了实施的 FSO/RF 混合通信系统在 1Gbps 的机载光学下行链路中的实验结果。关键词:自由空间光学、激光通信、混合链路、高数据速率
简介:使用实验室模拟或陆地模拟环境中产生的支持数据来解释行星表面的远程光谱。域翻译弥合了这些数据集之间的差距以解释航天器仪器限制,但是对于这种比较,很少有专用的自动化机制存在 - 单独使用广义模型。生成模型已用于重建稀疏的观察结果,并补偿了探测器特异性的噪声和信号转移。生成域翻译提供了一个独特的机会,可以比较具有相关多种属性但不同观察条件的数据集[1-3]。空间,时间,成分,嗜热物,环境和其他观察性特征可能会在仍然具有至少一个基础特性的数据集中有所不同。两个具有巨大不同频谱分辨率的数据集可能具有相同的特征吸收功能,但是在每个功能中识别每个功能都是完全不同的任务。例如,与未知仪器遮盖的8-32频段光谱中的特征很容易与在实验室中没有手动差异的150个或更多频段的类似光谱进行比较。在这里,我们证明了生成对抗网络(GAN)在观察域之间翻译光谱数据的同时,同时保留了歧管组成和热物理特征,但以最小的重建损失转换了特定的特定环境。此域翻译模型可以将低分辨率的远程光谱转换为更高的分辨率,并有效地补偿了仪器响应功能,大气干扰,目标温度或反照率以及其他特定于观察的效应。