摘要:ZHAW 航空中心开发并实施了一种综合气象和地形对飞机安全范围影响的新型能源管理系统概念。在研究和教学模拟器 (ReDSim) 中构建了相应的飞行模拟环境,以测试驾驶舱显示系统的首次实施。与一组飞行员进行了一系列飞行员在环飞行模拟。通用航空飞机模型 Piper PA-28 经过修改以用于研究。ReDSim 中的环境模型经过修改,包括一个新的临时子系统,用于模拟大气扰动。为了在 ReDsim 中生成高分辨率风场,在概念研究中使用了一种成熟的大涡模拟模型,即并行大涡模拟 (PALM) 框架,重点研究了瑞士萨梅丹附近的一个小山区。为了更真实地表示特定的气象情况,PALM 由从 MeteoSwiss 的 COSMO-1 再分析中提取的边界条件驱动。从 PALM 输出中提取基本变量(风分量、温度和压力),并在插值后输入子系统,以获得任何时刻和任何飞机位置的值。在这个子系统中,还可以基于广泛使用的 Dryden 湍流模型生成统计大气湍流。本文比较了两种产生大气湍流的方法,即结合数值方法和统计模型,并介绍了飞行测试程序,重点强调了湍流的真实性;然后介绍了实验结果,包括通过收集飞行员对湍流特性和湍流/任务组合的反馈而获得的统计评估。
摘要:ZHAW 航空中心开发并实施了一种综合了气象和地形对飞机安全范围影响的新型能源管理系统概念。在研究和教学模拟器 (ReDSim) 中构建了相应的飞行模拟环境,以测试驾驶舱显示系统的首次实施。与一组飞行员进行了一系列飞行员在环飞行模拟。通用航空飞机模型 Piper PA-28 经过修改以用于研究。ReDSim 中的环境模型经过修改,包括一个新的临时子系统,用于模拟大气扰动。为了在 ReDsim 中生成高分辨率风场,在概念研究中使用了一种成熟的大涡模拟模型,即并行大涡模拟 (PALM) 框架,重点研究了瑞士萨梅丹附近的一个小山区。为了更真实地表示特定的气象情况,PALM 由从 MeteoSwiss 的 COSMO-1 再分析中提取的边界条件驱动。从 PALM 输出中提取基本变量(风分量、温度和压力),并在插值后输入子系统,以获得任何时刻和任何飞机位置的值。在这个子系统中,还可以基于广泛使用的 Dryden 湍流模型生成统计大气湍流。本文比较了两种产生大气湍流的方法,即结合数值方法和统计模型,并介绍了飞行测试程序,重点强调了湍流的真实性;然后介绍了实验结果,包括通过收集飞行员对湍流特性和湍流/任务组合的反馈而获得的统计评估。
摘要:本文介绍了一种根据飞行记录的传感器数据估计大气扰动引起的全局结构载荷的方法。所提出的方法基于用扰动动力学增强动态、灵活的飞机模型。推导出此增强模型的状态观测器,即卡尔曼-布西滤波器。传感器数据通过观测器处理,从而能够估计飞机遇到的大气扰动。随后,这些估计的扰动用于估计全局飞机载荷。为了评估载荷估计结果,应用了等效损伤载荷的概念。它将全局载荷与其对飞机结构疲劳的影响联系起来。为了验证所提出的工具链,模拟了认证中的设计场景,即离散阵风和连续湍流遭遇,以模拟真实的运行数据。收集的数据用于将得到的估计载荷与模拟载荷与等效损伤载荷进行比较。
摘要:本文介绍了一种根据记录的飞行传感器数据估计大气扰动引起的全局结构载荷的方法。所提出的方法基于用扰动动力学增强动态、灵活的飞机模型。推导出此增强模型的状态观测器,即卡尔曼-布西滤波器。传感器数据通过观测器处理,从而能够估计飞机遇到的大气扰动。随后,这些估计的扰动用于估计全局飞机载荷。为了评估载荷估计结果,应用了等效损伤载荷的概念。它将全局载荷与其对飞机结构疲劳的影响联系起来。为了验证所提出的工具链,模拟了认证中的设计场景,即离散阵风和连续湍流遭遇,以模拟真实的操作数据。收集的数据用于将得到的估计负载与模拟负载进行比较,并比较等效损坏负载。
滑翔机在空气动力学研究中的另一个非常重要的用途是测量飞行性能。有几种方法可以确定飞机的滑翔比,其中比较法最准确且最省时。通过使用经过精确校准的滑翔机,可以准确知道滑翔极线曲线,并与另一架作为测量测试品的滑翔机编队飞行,可以通过测量不同空速下的相对垂直速度来确定未知的极线曲线。因此,理想情况下,任何大气扰动都会被抵消,并且可以在 2-5 次飞行中非常准确地确定极线曲线。Ka6E、Cirrus 和 DG300/17 用于这些测量,使用摄影测量法来确定两架飞机之间的相对垂直速度——GPS 随 DG300/17 引入,并继续用于 Discus-2c DLR,现在使用移动基准差分 GNSS 技术。
摘要 — 未来无线通信的路线图有望利用所有适合传输的频谱带,从微波到光频率,以支持比目前部署的解决方案快几个数量级的数据传输和更低的延迟。目前尚未得到充分利用的中红外 (mid-IR) 频谱是这种设想的全光谱无线通信范式的基本组成部分。中红外区域的自由空间光 (FSO) 通信最近引起了极大兴趣,因为它们具有低传播损耗和高大气扰动耐受性的内在优点。未来可行的中红外 FSO 收发器的发展需要半导体源来满足高带宽、低能耗和小占用空间的要求。在这种情况下,量子级联激光器 (QCL) 似乎是一种有前途的技术选择。在这项工作中,我们展示了一个由 4.65 µ m 直接实现的中红外 FSO 链路的实验演示
图像去雾是一种减少图像中雾霾、灰尘或雾气影响的方法,以便清晰地查看观察到的场景。文献中存在大量传统和基于机器学习的方法。然而,这些方法大多考虑可见光光谱中的彩色图像。显然,由于热红外光谱的波长较长,受雾霾的影响要小得多。但远距离观测期间的大气扰动也会导致热红外 (TIR) 光谱中的图像质量下降。在本文中,我们提出了一种为 TIR 图像生成合成雾的方法。然后,我们分析了现有的盲图像质量评估措施雾感知密度评估器 (FADE) 对 TIR 光谱的适用性。我们进一步全面概述了当前图像去雾的最新技术,并通过经验表明,许多最初为可见光图像设计的方法在应用于 TIR 光谱时表现得出奇的好。这在最近发布的 M3FD 数据集上进行的实验中得到了证实。
DARPA 预计 POWER 项目的执行者将创造新颖的光学技术集成,以创建能够重定向、波前校正和光束能量收集的机载中继。最终演示的目的是使用现有平台承载的三个机载中继节点,将能量从地面源激光器传输到高空以实现远程效率,并返回到 200 公里外的地面接收器。预计平台将在 60,000 英尺左右运行,以最大限度地减少大气损失并提高中继的生存能力。高效而精确的重定向对于避免平台热挑战和确保中继光束有效照射所需目标是必不可少的。为了解决光束在穿过大气扰动时光束质量下降的问题,中继必须能够根据需要校正光波前以实现系统效率目标。最后,中继必须能够有选择地从光束中收集能量以提供机载辅助电源,从而展示未来无限期持久中继平台的必要特性。我们鼓励提出以新颖的方式利用现有和新兴光学技术,以有效的低尺寸、低重量、低功率和低成本实现项目目标的提案。
⚫ 大气扰动 正在进行的研究项目沿海社区对气候变化和腹泻的适应力 (C2R-C2D) (2020-2025 财年):C2R-CD 旨在产生知识,支持沿海社区对气候变化的适应力建设和改善腹泻管理。该项目由丹麦发展署 (DANIDA) 资助。项目合作伙伴包括加纳大学、奥胡斯大学、丹麦、加纳环境保护署 (EPA)、加纳人类住区人民对话 (PD)。建设更强大的大学项目 III,加纳大学,加纳建设更强大的大学项目 III (BSUIII) (2019-2021) - 气候变化:在该项目下,研究重点是气候变化和极端气候对农作物种植的影响:缓解和适应战略。它包括加纳在气候变化和气候变化下作物产量的适宜性。其他研究 了解非洲的气候动态、气候观测和气候服务预测。由于缺乏可获得和高质量的观测数据以及缺乏研究,了解气候对非洲的影响仍然是一项挑战。这项研究对非洲过去、现在和未来的气候进行了全面评估。它还开发了工具来提高我们对气候系统驱动机制的理解,并最终为相关气候服务部门的实施和发展规划提供了指导原则。 15. 资助
John O’Callaghan,NTSB 摘要 模拟是 NTSB 用于了解事故期间控制飞机运动的物理原理的工具之一。如今,NTSB 的工程桌面模拟程序基于 MATLAB,并包括一个“数学飞行员”,可以计算一组飞行控制和油门输入,以匹配给定的飞行轨迹(例如,由记录的雷达或 GNSS 数据确定)。描述飞机的数学模型必须从制造商处获得或以其他方式估算。此工具已用于重现和分析最近几起通用航空事故的记录飞行路径。但是,NTSB 也会在适当的情况下使用其他类型的模拟。本文将讨论美国国家运输安全委员会使用的三个不同级别的模拟:1) 全飞行飞行员训练模拟器,2) 没有飞行员界面的桌面工程模拟,以及 3) 用作事故数据“媒体播放器”的模拟器视觉效果和驾驶舱。这些不同层次将通过以下案例研究进一步说明:2009 年“哈德逊奇迹”在哈德逊河上迫降事件(US1549)、2001 年美国航空 587 号航班在纽约发生的事故(AA587)、2017 年皮拉图斯 PC-12 空间定向障碍事故以及 2015 年 F-16 战斗机与赛斯纳 150 空中相撞。在这些事件的调查中使用了以下模拟器:● 使用空客 A320 全飞行工程模拟器评估 US1549 飞行员可用的着陆选项,该航班在两台发动机因鸟击而失去推力后在哈德逊河迫降。此外,模拟器还用于评估实现规定的迫降着陆标准的操作可行性。● 将空客 A300 全飞行模拟器所基于的数学空气动力学和推进模型整合到桌面工程模拟器(无飞行员界面)中,以分析 AAL587 飞行数据记录器上记录的飞机运动。这项分析用于确定飞行员飞行控制输入和外部大气扰动(由尾流穿透引起)对飞机运动和载荷的相对重要性。此外,NASA Ames“垂直运动模拟器”(VMS)用于重现 AA587 场景,复制事件期间的视觉场景、驾驶舱控制运动、仪表显示、载荷系数(在限制范围内)和声音(包括驾驶舱语音记录器音频)。VMS 的这种“反向驱动”使调查人员能够评估飞机加速度可能如何影响副驾驶对方向舵踏板和其他飞行控制装置的反应。● 在桌面工程模拟器中使用 Pilatus PC-12 的仿真模型来计算一组飞行控制和油门输入,从而匹配记录的雷达数据。● 最后,对于空中相撞的情况,使用 Microsoft Flight Simulator X 描绘每架飞机驾驶舱的视觉场景,包括从每位飞行员的角度看到的冲突飞机的外观。该动画使调查人员能够确定每架飞机在碰撞前几分钟的可见性,并有助于说明“看见并避免”碰撞避免概念的局限性,以及驾驶舱显示交通信息的好处。