摘要:光学遥感数据的大气校正需要确定气溶胶和气体的光学特性。提出了一种方法,该方法允许从无云情况下的投影像素中以低于 5 m 的空间采样间隔检测光学遥感数据的气溶胶散射效应。导出的气溶胶光学厚度分布用于改进大气补偿。第一步,一种新颖的光谱投影检测算法使用光谱指数确定阴影区域。对投影掩模的评估显示整体分类准确率在 80% 的水平上。使用这种导出的阴影图,将 ATCOR 大气补偿方法迭代应用于阴影区域,以找到最佳气溶胶量。通过分析完全阴影像素与直接照明区域的物理大气校正来找到气溶胶光学厚度。基于阴影的气溶胶光学厚度估计方法 (SHAOT) 在机载成像光谱数据以及摄影测量数据上进行了测试。对于所研究的测试案例,使用这种导出的气溶胶光学厚度进行大气校正的反射率值的精度可以从 3-4% 提高到优于 2% 的水平。
随着固态激光装置的改进、实现功率目标、表现出优异的激光光束质量、提高效率以及向集成到军事平台所需的重量和体积目标迈进,JTO 正将重点放在激光武器系统的另一个主要部分,即激光束的管理和控制上。这项名为“定位和交战先进光束控制 (ABLE)”的计划将提高激光束控制系统的整体性能。ABLE 系统的重点是:1) 最大限度地提高激光吞吐量;2) 增强指向和跟踪能力;3) 在湍流环境中推进大气补偿。正在开发这些领域最先进的组件,用于子系统能力演示。最终,将使用 RELI 级激光器进行集成系统演示,以展示 ABLE 技术提供的系统性能改进。
以快速前往火星为设计目标,探索定向能应用于航天器任务设计。随着光子激光技术的不断发展,预计将实现前所未有的尺寸(直径 10 米)和功率(100 兆瓦)的地球激光阵列。这种尺寸的相控阵激光器结合大气补偿,能够将激光功率传送到地月空间的航天器,入射激光通过充气反射器聚焦到氢加热室中。然后,氢推进剂通过喷嘴排出,实现 3000 秒的比冲。该架构可通过回燃机动立即重复使用,以返回推进装置,同时仍在地球激光的射程范围内。能够承受更大的激光通量,从而实现高推力和高比冲的组合,与激光电推进相比,这种方法更具优势,并且占用的参数空间类似于气芯核热火箭(无需反应堆)。加热室及其相关的再生冷却和推进剂处理系统是设计的关键要素,在本研究中受到特别关注。还详细分析了经过 45 天的飞行后到达火星所需的天体动力学和极端空气捕获机动。讨论了激光热推进作为太阳系及其他地区其他快速飞行任务的有利技术的应用。