封面:国际大洋发现计划 (IODP) 船只(从左到右):地球号,一艘在西太平洋进行取芯的立管平台;JOIDES Resolution,在整个海洋中回收岩心;以及一艘任务专用平台 (MSP) 钻井船。虚线 — 代表深度。左图:地球号在 2012 年远征 377 号、地点 C0020 回收的产甲烷微生物群落,位于日本下北半岛 80 公里(50 英里)外的中新世煤层,海底 2 公里(1.25 英里)以下。中间:JOIDES Resolution 回收的古新世 - 始新世极热岩心。左侧岩芯取自太平洋沙茨基海隆 1209 号地点,取自 2387 米深的水下 (mbsl)。右侧岩芯取自南大西洋鲸湾海脊 1262 号地点,取自 4755 mbsl。颜色变化表明碳酸盐溶解。右图:MSP Expedition 364,M0077 号地点,从 Chicxulub 撞击坑边缘取芯。图中显示的是包含碎屑和熔岩的熔覆岩。照片来源:左图:JAMSTEC/IODP;中图和右图:IODP。参见相关文章,第 4-11 页。
摘要。冰川终止以气候系统不同组成部分的重组为特征。特别是,快速的冰盖瓦解会导致误解的反馈回路,这些反馈循环仍然很少了解。为了进一步研究这一方面,我们在这里使用了完全构成的北半球冰盖模型,以形成最后两个冰川终止的数值实验。我们表明,即使这两个终止的一阶气候轨迹相似,太阳日光差的差异也会导致冰原 - 气候系统的重要变化。在倒数第二次终止期间温度较高,与全新世的最后一次冰河间期间的海平面兼容。我们将最后一次对海平面上升约2 m的海平面上升的冰川绿地贡献。我们还模拟了南大洋的温暖地下,与南极冰盖的副作用兼容。,即使没有考虑冰盖融化而导致的海洋淡水浮游,这两个终止却散发出不同的大西洋推翻循环敏感性,这种循环在五次终止期间更容易占用。最后,在额外的灵敏度实验中,我们表明,对于这两个终止,即使还需要考虑植被变化以模拟整个脱胶裂解,北半球的灭绝也是冰盖重新治疗的主要驱动力。相反,即使它影响温度,温室气体的浓度也单独变化也不能解释冰盖撤退的幅度,而只能调节其时间安排。
主要是由绿色房屋气体排放驱动的人类全球变暖,其稳定速度约为0.2°C/十年,SinceatLeast1970 1.然而,几个阶段性地点在全球平均表面温度的速度上逐渐升高(GSTA)左右(GSTA)的全球平均水平升高(GSTA)的次数较小(GSTA),这是4个4号(GSSA),并增加了1990年4月4日。海水含量积累的加速度6。 因素因人为排放而导致的,包括富集的温室气体堆积,以及硫排放清理7后人为气溶胶的冷却损失,尤其是在中国和全球运输部门。 尽管变暖速率明显增加,并且赤道过渡到ENSO阳性状态,但通过2023年记录的创纪录的表面温度异常令人惊讶。 所有主要温度Seriesshow 2023是有记录以来最温暖的一年。 设定记录的边距约为0.15°C,也是不寻常的,但在强劲的厄尔尼诺时代却没有前所未有的。 值得注意的是,几个海洋盆地在一年中的大部分时间里都有前所未有的表面温度,包括赤道和北太平洋,北大西洋和南大洋8、9。 一个核心问题是,这种强烈的异常是与内部变异性10和已知的衰老量表区域强迫一致,还是表明气候系统的迅速变化,或者我们对其的影响4、11。 清理运输排放量与2021 Hunga Tonga Volcano 13一样,以及与气雾相关的透露措施的抗态度高于预期的气候敏感性。主要是由绿色房屋气体排放驱动的人类全球变暖,其稳定速度约为0.2°C/十年,SinceatLeast1970 1.然而,几个阶段性地点在全球平均表面温度的速度上逐渐升高(GSTA)左右(GSTA)的全球平均水平升高(GSTA)的次数较小(GSTA),这是4个4号(GSSA),并增加了1990年4月4日。海水含量积累的加速度6。因素因人为排放而导致的,包括富集的温室气体堆积,以及硫排放清理7后人为气溶胶的冷却损失,尤其是在中国和全球运输部门。尽管变暖速率明显增加,并且赤道过渡到ENSO阳性状态,但通过2023年记录的创纪录的表面温度异常令人惊讶。所有主要温度Seriesshow 2023是有记录以来最温暖的一年。设定记录的边距约为0.15°C,也是不寻常的,但在强劲的厄尔尼诺时代却没有前所未有的。值得注意的是,几个海洋盆地在一年中的大部分时间里都有前所未有的表面温度,包括赤道和北太平洋,北大西洋和南大洋8、9。一个核心问题是,这种强烈的异常是与内部变异性10和已知的衰老量表区域强迫一致,还是表明气候系统的迅速变化,或者我们对其的影响4、11。清理运输排放量与2021 Hunga Tonga Volcano 13一样,以及与气雾相关的透露措施的抗态度高于预期的气候敏感性。然而,可能性仍然是2023 GSTA记录仅仅是正在进行的原子源性影响的组合,以及在观察到的年际和际变异性范围内的海面温度模式。
作为达索公务机系列的旗舰产品,猎鹰 7X 是第一款使用电传数字飞行控制系统的公务机。凭借全新的高跨音速机翼,猎鹰 7X 的航程约为 6,000 海里,但燃油效率却与小型飞机相当 - 即使配备三个发动机。然而,它能够进入小型机场,这意味着它可以在跨越大洋或大陆之前进行几次短途飞行来接载乘客。猎鹰 7X 的翼展为 86 英尺(26.2 米),长度为 76 英尺(23.2 米),高度为 25 英尺(7.8 米),比许多其他公务机都要大。机舱长 39 英尺(12 米),宽 92 英寸(2.34 米),高 74 英寸(1.92 米),根据乘客喜好可提供最多 12 个座位。最大起飞重量为 69,000 磅,最大着陆重量为 62,400 磅,装备空重 33,200 磅。Vmo/Mmo 分别为 370kias/0.90M。性能猎鹰 7X 是一种超长距离飞机,最大航程为 5950 海里,基于满油、3 名机组人员、8 名乘客及行李、0.80 海里巡航和无风,采用 NBAA IFR 备份(一次进近复飞,5 分钟等待,200 海里备降,30 分钟等待在 5000 英尺)。这个航程可以从巴黎直飞东京、香港和美国西海岸;从迪拜直飞欧洲、亚洲、非洲和西澳大利亚;从洛杉矶直飞欧洲大部分地区和整个拉丁美洲。在相同性能条件下,平衡场起飞所需距离仅为5505英尺(1678米),着陆距离为
摘要。网络方法可以阐明复杂海洋社区的结构和稳定性。近年来,这种方法已成功地用于研究极地生态系统,从而提高了我们对它们如何应对持续环境变化的了解。韦德尔海是南大洋南极半岛外研究最多的海洋生态系统之一。然而,很少有研究认为Weddell Sea Food Web的已知复杂性,该网络的当前形式包括490种和16 041捕食者 - 捕食者相互作用。在这里,我们对Weddell Sea Food Web进行了分析,重点是基于生态系统结构和稳定性的物种和营养相互作用。我们估计了食品网中每种相互作用的强度,在食物网中的物种位置表征了未加权和加权食品网的特性,以及肛门物种在食物网稳定性方面的作用。我们发现,在食物网级上相互作用强度(IS)的分布是不对称的,许多相互作用较弱且相互作用很少。我们检测到物种中位数IS和两个未加权特性之间的正相关(即营养水平和交互总数)。我们还发现,在食品网稳定性方面,只有少数物种具有关键的作用。这些物种是由中位数为中位数,中间至高营养水平,相对较高的相互作用以及中间至低营养相似性的特征。在这项研究中,我们整合了未加权和加权食品网络信息,从而对Weddell Sea Food Web的生态系统结构和功能进行了更全面的评估。我们的结果提供了新的见解,这对于制定有效的政策和管理策略很重要,尤其是考虑到正在进行的
摘要。自从第一个耦合模型对比项目版本6(CMIP6)模拟释放以来,讨论最多的主题之一是某些模型的有效气候灵敏度(EC)较高,与以前的CMIP相比,CMIP6中EC值的范围更高。对ECS的重要贡献是云气候反馈。尽管在过去的几十年中,气候模型一直在不断开发和改进,但云的现实代表仍然具有挑战性。云会导致建模的EC中的大型不确定性,因为云属性的预计变化和云反馈也取决于当前的模拟场。在这项研究中,我们研究了总共51 CMIP5和CMIP6模型的云物理和辐射特性的表示。ecs用作简单的指标来对模型进行分组,因为物理云对变暖的敏感性与云反馈密切相关,而云反馈又对EC有很大的贡献。在将来的情景模拟中,ECS组分析了云属性的预测变化。为了帮助解释预计的变化,还分析了历史模拟的模型结果。结果表明,净云辐射效应的差异是对三个模型组中变暖的反应的差异是由一系列云制度而不是单个区域的变化驱动的。在极地区域中,高ECS模型显示,由于变暖,云的净冷却效应的增加较弱,而不是低ECS模型。同时,高ECS模型显示出热带海洋和亚热带层流量区域的云冷却效果的下降,而低ECS模型的变化很小,甚至几乎没有变化。在南大洋上,低-ECS模型比高ECS模型对变暖的净云辐射效应具有更高的灵敏度。
受到中大西洋山脊和欧洲大陆架的限制,深海橡子式藤壶hirasma hirsutum(Hoek,1883年)居住在东北大西洋深海,在高电流地区经常报告它。在整个成年生活中固定在固体底物上,该物种只能通过浮游营养的nauplius幼虫分散。这项研究报告了来自冰岛东北部盆地内四个地点的Hirsutum的发生,生态和遗传连通性的发生,并列出了与雷克雅内斯山脊轴上的水热域相关的物种的第一个记录。发现与通风孔相关的标本通过突出的棕色黑色壳沉淀物外在与其自然阴影的同种不同。能量色散光谱显示,弹性氧化物是这些壳沉淀物的主要成分。形态测量表明,与通风相关栖息地的标本相比要小。基于线粒体COI和核EF1遗传标记的分子划界有助于物种鉴定,并揭示了种内遗传变异性较低。我们的发现表明,在研究区域内,毛肌的遗传连通性明显,并为生物地理研究提供了第一步。因此,与西大西洋的深海盆地一样,讨论了沿着大西洋山脊的水热影响的栖息地。鉴于据报道与热液活性的隶属关系,我们详细阐述了姊妹物种Bathylasma Corolliborme(Hoek,1883)和Bathylasma Chilasma chilasma chilase&Newman,2018年分别利用南极和太平洋大洋中的等效栖息地。我们记录了Hirsutum的未经认识的生态利基占领,强调需要进一步研究沿着广泛的中大西洋山脊沿着大西洋山脊进行的Bathylasmatid Acorn barnacles,在那里仍有许多生物群落有许多生物群落。
摘要:在这项研究中,高分辨率耦合的海洋 - 大气模拟在墨西哥湾流进行研究,以研究尺度[O(10)km]热反馈(TFB)和当前反馈(CFB)的影响(CFB)在低水平的大气层和大洋kitecale Kinicetic kinicetic Energy(SKE)上的影响。在子尺度上,TFB和CFB对风和表面应力表现出结构性和破坏性影响,这使得这比中尺度[O(100)km]更复杂。这种硬币的动力改变了经典的耦合系数,构成了单个耦合机制的挑战。在这里,反馈是通过在专用模拟中删除空气上的烙印来分别隔离的。子尺度TFB和CFB都会导致SKE的阻尼。CFB会导致涡流在电流和气氛之间杀死。然而,虽然由于风反应较弱(较少的重新启动),埃迪杀戮应该比其中尺度更具效率,但由于TFB和TFB的能量受到妨碍,其效果受到了TFB的能量和瞬时性能的高度瞬时性质,从而使Ske的降低降低了10%。tfb也有助于减少SKE,主要是通过引起势能下水道,这与湍流热孔相关,尤其是在10 km的尺度上。倾斜的能量下沉会通过降低的斜压能量转换影响SKE,尽管这是由于Ekman泵送CFB泵送的增加而稍微调节了这一点。未来的参数化应具有比例意识,并考虑了TFB和CFB对动量和热量量的影响。我们的结果强调了在子尺度上同时考虑TFB和CFB的重要性,并突出了中尺度CFB参数化的局限性在子尺度应用程序中的局限性。
二十年代是海军航空兵历史上一个引人注目的成长时期。航空兵的规模和实力稳步增长,在海军中行政和作战地位也不断提高。这一时期开始时,海军航空兵的领导权属于一位无权指挥的局长。这一时期结束时,航空局蓬勃发展。二十世纪二十年代初,各大洋舰队的小型航空支队证明了自己在海上条件下的作战能力。最后,三艘航空母舰全面投入作战,巡逻中队执行侦察任务,飞机定期被派往战列舰和巡洋舰。这些要素在年度舰队演习中发挥了重要作用。这一时期还出现了令人印象深刻的技术进步。在资金紧张的情况下,径向风冷发动机被开发成一种高效可靠的推进源。更好的仪器投入使用,精确的轰炸瞄准器也得到了开发。配备油压支柱和折叠机翼的飞机增强了航母的作战能力。每一年,飞机的飞行速度都更快、更高、更远。在众多的世界纪录中,美国海军飞机创造了自己的一份。战术得到了发展。俯冲轰炸几乎在人们对其有了足够的了解并能直呼其名之前就已确立。海军陆战队远征部队通过经验了解了空中支援的价值。他们研究并学习了鱼雷攻击、侦察、炮火定位和从先进基地作战的技术。海军飞行员的技能使飞机在极地探险和摄影测量中有了新的用途。海军正在解决将航空兵带入海上这一基本而独特的问题,这一点随处可见。但这一时期的争议也超出了海军的范围。报纸报道了空中力量支持者的愤怒言论和反对者的恶毒反驳。有人指责空中力量重复、效率低下、偏见和嫉妒。人们讨论了空中力量的作用以及各军种在海岸防御中的作用等问题。甚至有人质疑是否还需要建立海军。海军飞行员对他们的职业限制感到不满
会议联合主席韦恩·科布利(Wayne Cobleigh),副总裁GZA Geoenvironmental,Inc。249 Vanderbilt Avenue Norwood,马萨诸塞州02062 781-278-3848 | M 860-250-6790 | wayne.cobleigh@gza.com Wayne是GZA的公司会员代表美国清洁能源协会(ACP)和海上Wind商业网络。他是ACP海上风技术咨询小组(OWTAP)岩土技术小组委员会的成员,用于开发美国离岸风力技术实践标准。他负责与GZA的港口开发,海上风和权力客户一起对客户关系和业务发展。Minna Mathiasson,海上风能项目经理Tetra Tech 10邮局Square,Suite,1100 Boston,MA 02109 M 207-399-3294 | Minna.mathiasson@tetratech.com是Tetra Tech的海上风能项目经理,Minna通过建设和运营计划的制定(COP)以及其他联邦和州备案,以支持整个东海岸的海上风开发商,以支持路线,选址,并设计项目以及设计项目以及协调的股份和协调的利益相关者和代理机构Uneach。她的背景是网络科学和工程,专门从事可再生能源和可持续发展。Deborah(Debbie)Rutecki,高级科学家Normandeau Associates,Inc。141 Falmouth Heights Rd。 drutecki@normandeau.com Rutecki女士是一位海洋科学家,在环境监测,影响评估和底栖大型无脊椎动物调查方面拥有超过20年的经验。她管理着包括生物实验室的诺曼多法尔茅斯办事处。rutecki女士负责监督沿海和河口能源生产设施的生态影响评估研究的项目管理和绩效,以及底栖式基础性基础调查,以及各种允许和资源评估项目,用于海上风,挖泥机,码头基础设施以及其他大洋和沿海开发项目。