摘要。未来空中风能技术的公用事业规模部署需要开发大规模多兆瓦系统。本研究旨在量化大气边界层 (ABL) 与农场中运行的大规模空中风能系统之间的相互作用。为此,我们提出了一种虚拟飞行模拟器,结合大涡模拟来模拟湍流条件和飞行路径生成和跟踪的最佳控制技术。通过实施与模型预测控制器配对的执行器扇区方法,实现了流动和系统动力学之间的双向耦合。在本研究中,我们考虑了地面发电泵送模式 AWE 系统(升力模式 AWES)和机载发电 AWE 系统(阻力模式 AWES)。该飞机翼展约 60 米,飞行大回旋直径约 200 米,中心高度为 200 米。对于升力模式 AWES,我们还研究了不同的放出策略,以减少系留翼与自身尾流之间的相互作用。此外,我们还研究了由 25 个系统组成的 AWE 园区,这些系统排列成五排,每排五个系统。对于升力和阻力模式原型,我们考虑采用中等园区布局,功率密度为 10 MW km − 2
精确模拟高雷诺数可压缩流动具有挑战性。对于直接数值模拟 (DNS),必须解析所有尺度的流体运动,根据 Choi 和 Moin 1 的说法,网格点的数量按 N ∝ Re 37 / 14 L 缩放。虽然 DNS 是最准确的方法,但它的计算成本也最高。大涡模拟 (LES) 仅解析大能量承载流动结构,未解析(即子网格)结构用子网格应力 (SGS) 模型建模,或直接通过数值方案的扩散(即隐式 LES,ILES)来解释。对于壁面解析 LES (WRLES),近壁面条纹的平均长度和展向间距为 x + ≈ 1000 和 z + ≈ 100,通过壁面粘度 µ w 和摩擦速度 u τ = p 变为无量纲