常规育种对于改善与产量相关的性状和发展高产物品种至关重要。在提出的研究中,对15个F 1杂种的评估将它们与其六种父母基因型进行了比较,以便各种特征的遗传变异。结果表明,差异分析显示跨组合和父母品种以及父母和十字架之间的显着(p≤0.01)。所有特征的父母与杂交的平均平均值也表明(p≤0.01)。对于F 1 Generation研究的所有特征,一般(GCA)和特定组合能力(SCA)方差均显着(P≤0.01)。三种品种,即Sakha108,Giza179和Sakha109,对于谷物产量植物-1的高度阳性为阳性,这意味着这些品种可以使作为好的组合者受益,以转移育种计划中的上述特征。在SCA中,七个十字在植物的高度上为负,并且需要负值以避免住宿并适合机械收集;但是,在其余的特征中,优选阳性的显着值是可取的。结果表明,谷物产量植物-1和植物高度的最佳交叉是Sakha105×Sakha102,Sakha105×Sakha108和Sakha108×Sakha109。进行聚类分析也表现出分为四组的基因型。第一组仅包括大米基因型Sakha109和Sakha108。这些品种是由共同的父sakha101产生的,可以具有三个定量性状的遗传关系(旗叶面积,1000粒粒度和圆锥体重量)。包括Sakha 102和Sakha 106的第二组具有非常相似的遗传背景,因为两个品种共享一个共同的父母,Giza 177。此外,这两个水稻品种的分ers植物的植物数量为-1、1000粒重量,而圆锥花序植物-1。第三组仅包括属于Indica-Japonica品种的Giza 179。第四组由不同父母生产的Sakha 105。关键字:水稻(oryza sativa L.),育种,能力,遗传变异,遗传潜力,基因型和表型方差,遗传力
区块链技术的独特特征导致除了金融外,在各个领域都采用了它。这样一个领域就是供应链,缺乏透明度和信息可追溯性。尤其是在农业领域中,需要一种像区块链这样的新兴技术来消除一些常见的陷阱,例如原产地采购,避免产品掺假,追踪整个农业供应链,客户满意度以及确保透明度。本文研究了可追溯性系统中区块链技术的工作和采用。随后,它实施了区块链技术,以使用Python和Flask Framework创建分布式农业供应链网络。所有利益相关者都将在该网络中连接以进行透明的产品交易。产品来源将从数字分类帐记录中标识,因为每个交易都由产品和存储在其中的利益相关者的详细信息组成。所有利益相关者都被视为已验证的对等节点,该节点使网络安全。这项工作总体上为供应链网络提供了透明度,安全性和可靠性。
“杂种大米的父亲”元朗普平移创造了高产混合米饭,每年可以养活数千万人。The research achievements of Yuan and his team on low cadmium-accumulating rice and sea rice, in addition to hybrid rice, as well as those of a large number of Chinese scientists engaged in rice research in other six areas, including the rice genome, purple endosperm rice, de novo domestication of tetraploid rice, perennial rice, rice blast disease, and key genes for high nitrogen use ef fi ciency, play在促进联合国可持续发展目标2和12的实现方面的重要作用。本审查的目的不是详细说明每项研究的细节,而是创新地总结这些成就的重要性和灵感,以确保全球粮食安全并实现可持续的农业。将来,通过基因组编辑等现代生物技术来培养新的水稻品种,不仅会减少饥饿,而且可能减少人类的冲突,改善环境并减轻气候变化。
摘要:本研究旨在确定在Poktan Parung Kembang Rice Factory增加销售中应应用哪些营销策略。在这项研究中,根据IFA和EFAS SWOT分析的结果,使用数据收集技术通过访谈,观察,问卷调查和文档进行了数据收集技术。研究人员直接在现场与三名资源人员或线人进行了访谈。从这项研究中获得的结果是;目前,Poktan Parung Kembang Rice Factory生产了三种具有不同价格和包装的水稻产品,这是Poktan Parung Kembang Rice Factory的营销策略的重点,从而通过实施4P策略,即产品策略,价格,价格策略,地点/分配策略和促销策略来增加产品销售。但是,开展营销活动的Poktan Parung Kembang Rice工厂的主要2重点是给消费者的个人销售方法,尤其是最接近他们的人,因此他们没有大量使用社交媒体作为促销活动的主要手段。和获得的SWOT分析结果,Poktan Parung Kembang Rice工厂位于象限中,该工厂支持实施积极的策略。
全球超过一半的人口取决于大米作为主要的粮食作物。大米(Oryza sativa L.)容易受到非生物挑战的攻击,包括干旱,寒冷和盐度,因为它在半偏生,热带或亚热带环境中生长。非生物应激性抗性已繁殖到水稻植物中。在发现基因组之前,使用正向遗传学方法鉴定了非生物应激相关的基因,并且使用传统的育种方法开发了耐非生物应激的线条。动态转录组表达表示在其生长和发育中特定点的单个生物体的特定细胞,组织或器官中的基因表达程度。转录组学可以在整个转录水平的压力条件下在整个基因组水平上揭示表达,这可以有助于理解与植物的胁迫耐受性和适应性有关的复杂的调节网络。水稻(Oryza sativa L.)基因家族使用其他植物物种的参考基因组序列相对发现,从而允许全基因组鉴定。通过基因表达填充的转录组学,最近由RNA-Seq统治了基因组技术。 所有这些基因组和转录组技术使参与水稻反应的众多重要QTL,S基因,启动子元素,转录因子和miRNA都成为可能。 在本综述中讨论了使用几种基因组和转录组方法来理解水稻(Oryza sativa,L。)承受非生物压力的能力通过基因表达填充的转录组学,最近由RNA-Seq统治了基因组技术。所有这些基因组和转录组技术使参与水稻反应的众多重要QTL,S基因,启动子元素,转录因子和miRNA都成为可能。在本综述中讨论了使用几种基因组和转录组方法来理解水稻(Oryza sativa,L。)承受非生物压力的能力
在大米(Oryza sativa)谷物发育期间出现的热应激会降低谷物质量,这通常表现为增加的谷物粉笔。尽管对热应激对谷物产量的影响进行了充分研究,但由于量化晶粒质量的探索程度不如谷物产量,因此在热应激下稻米质量的遗传基础较少。为了解决这个问题,我们使用了基于图像的比色测定法(红色,R;绿色,g)进行全基因组关联分析,以鉴定暴露于热应激的水稻晶粒中表型变异的基因基因座。我们发现从成熟谷物图像得出的R与G像素比(RG)有效地区分了来自对照(28/24°C)的半透明晶粒和热应激(36/32°C)植物。我们的分析产生了一种新型的基因,即米粉晶粒5(OSCG5),该基因调节热应激下的晶粒粉笔的自然变化。OSCG5编码一种晶粒特异性,表达的蛋白质未知功能。OSCG5转录本丰度的加入表现出较高的粉笔性,这与应力下的RG值较高有关。这些发现在热应激下相对于野生型(WT)的OSCG5敲除(KO)突变体的粉笔增加了。过表达OSCG5的植物的晶粒不如KOS,但在热应激下与WT相当。与WT和OE相比,KO突变体相对于对照组具有更大的热敏感性。共同表明,OSCG5的自然变化可能在热应激下有助于水稻质量。
我们致力于招募、留住和提拔学生、教职员工,这些学生、教职员工来自反映我们城市、国家和世界多元化身份的群体,尤其是高等教育中历史上被排斥和/或资源不足的群体。作为这一承诺的一部分,我们将提高学生、教职员工的文化能力,使他们能够以包容性领导者、教师、学者、倡导者和/或盟友的身份参与并做出贡献,参与多元化、公平的校园和工作环境。
研究GS3基因的敲除是否影响农艺性状,维护者GM1B和GM2B的主要相关农艺性状是表征和比较。特征在内,包括晶粒长度,晶粒宽度,晶粒长度与宽度的比率,圆锥花序长度,每个圆锥花序的晶粒数,每个圆锥花序的晶粒数,种子设定速率,1000粒度,有效的tiller数,有效的tiller数,在活动阶段,植物的高度,每工厂的植物高度和重量,并在图5和表3中显示了数据。结果的统计分析表明,GM1B和GM2B在分丁式数量,晶粒宽度和每个圆锥花序填充的晶粒数中没有显着差异,但是晶粒长度,1000晶粒重量和每个圆锥花序的晶粒数量分别增加了7.9%,7.7%,7.7%和25.5%。与GM1B相比,尽管GM2B的种子设定速率降低了13.6%,但其每工厂的重量显着增加了14.9%。每植物的谷物产量期限,在相应的CMS线(GM1A和
摘要:由真菌杂草虫L.引起的大米爆炸被认为是对世界大米生产的主要威胁之一。抗性品种的发展是最好的,可持续的控制替代品之一。植物育种工作已通过遗传图(连锁和关联)和标记辅助选择加速。On the other hand, genomic editing techniques, such as meganucleases (MNs), Zinc-finger nucleases (ZFNs), Transcription Activa tor–like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindrome Repeats/ CRISPR-associated protein 9 (CRISPR/Cas9), can be used to promote specific genetic modifications.同样,转基因也可以用于操纵特定基因。从这个意义上讲,这项工作旨在表征大米爆炸并阐明可用的生物技术替代方法,以加速改善水稻品种对水稻爆炸具有耐药性的发展。关键词:非生物压力,生物技术工具,Oryza sativa L.,pyricularia oryzae L.
品种创建方法的演变导致2012年的基因组编辑技术的出现,CRISPR-CAS9。这种技术将使快速,便宜地创建新品种成为可能。尽管有些人认为CRISPR-CAS9是革命性的,但另一些人认为这是潜在的社会威胁。为了记录骗子,我们解释了可以接受这种技术在马达加斯加创建雨养水稻品种的社会经济条件。该方法论框架基于38个个人和半结构化访谈,与组织采访的多家利益相关者论坛以及对148个水稻生产者的调查。的结果表明,基因组编辑的可接受性需要(i)通过调节结构的运作以及利益相关者对转基因生物的了解的升级来加强种子系统,(ii)评估编辑的多样性对生物多样性和土壤氮动力学和(iii)的生物多样性和人体cap剂的影响。用于调节种子系统的结构机制是确保基因组编辑技术的安全实验的必要条件。组织创新似乎也是必要的。该研究表明,科学家和非认识主义者社区之间的集体学习如何是各种创新过程的组成部分。