microRNA(miRNA)在真核生物的许多发育和生理过程中扮演着基本角色。植物中的miRNA通常通过mRNA裂解或翻译抑制来调节其靶标。但是,哪种方法起着主要作用,这两个功能模式是否可以转移仍然难以捉摸。在这里,我们确定了一个miRNA,miR408-5p,该miRNA调节生长素/吲哚乙酸30(IAA30),这是一种通过大米中的切换动作模式在生长素路径中的关键阻遏物。我们发现,miR408-5p通常会抑制IAA30蛋白的翻译,但是在高生长素环境中,它会促进IAA30 mRNA的衰变,当它被过量生产时。我们进一步证明,理想的植物体系结构1(IPA1)是由miR156调节的SPL转录因子,通过与MiR408-5p前光线前启动子介导叶子倾斜度。我们最终表明MiR156-IPA1-MIR408-5P-IAA30模块可以由MiR393控制,MiR393沉默了生长素受体。一起,我们的结果定义了水稻中的替代生长素转导信号通路,涉及miR408-5p的功能模式切换,这有助于更好地理解动作机械以及植物中miRNA的合作网络。
由CAS CAS分子植物科学卓越中心/上海Chenshan研究中心的Chen Xiaoya教授和来自中文科学学院遗传学与发育生物学研究所的Gao Caixia教授(CAS)的Gao Caixia教授(CAS),研究人员使用了针对性的基因编辑,仅修饰五个Amino Amino Amino Amino Amino Amino Amino Amino coem coem coem coem coem coe coe sen ken in nek nek nek nek nek nek nek nek in keq1 rice keq1 rice sen in nek nek nek nek new 。
摘要:本研究旨在确定在Poktan Parung Kembang Rice Factory增加销售中应应用哪些营销策略。在这项研究中,根据IFA和EFAS SWOT分析的结果,使用数据收集技术通过访谈,观察,问卷调查和文档进行了数据收集技术。研究人员直接在现场与三名资源人员或线人进行了访谈。从这项研究中获得的结果是;目前,Poktan Parung Kembang Rice Factory生产了三种具有不同价格和包装的水稻产品,这是Poktan Parung Kembang Rice Factory的营销策略的重点,从而通过实施4P策略,即产品策略,价格,价格策略,地点/分配策略和促销策略来增加产品销售。但是,开展营销活动的Poktan Parung Kembang Rice工厂的主要2重点是给消费者的个人销售方法,尤其是最接近他们的人,因此他们没有大量使用社交媒体作为促销活动的主要手段。和获得的SWOT分析结果,Poktan Parung Kembang Rice工厂位于象限中,该工厂支持实施积极的策略。
在这项研究中,使用反应上清液,将蒸汽爆炸用作木质素提取的主要方法。以这种方式,稻草中存在的木质素也可用于生产多元醇,这是合成一种类型的粘合剂(例如聚氨酯)的主要试剂之一,因此是稻草完全重估的稻草(Hernández-Ramos等人,2021年)。同时,我们的研究研究了木质素的纯化。木质素受到分馏的纯化技术,根据所应用条件的不同程度的纯度。这些纯化的木质素分数的特征是评估其对工业的适用性
常规育种对于改善与产量相关的性状和发展高产物品种至关重要。在提出的研究中,对15个F 1杂种的评估将它们与其六种父母基因型进行了比较,以便各种特征的遗传变异。结果表明,差异分析显示跨组合和父母品种以及父母和十字架之间的显着(p≤0.01)。所有特征的父母与杂交的平均平均值也表明(p≤0.01)。对于F 1 Generation研究的所有特征,一般(GCA)和特定组合能力(SCA)方差均显着(P≤0.01)。三种品种,即Sakha108,Giza179和Sakha109,对于谷物产量植物-1的高度阳性为阳性,这意味着这些品种可以使作为好的组合者受益,以转移育种计划中的上述特征。在SCA中,七个十字在植物的高度上为负,并且需要负值以避免住宿并适合机械收集;但是,在其余的特征中,优选阳性的显着值是可取的。结果表明,谷物产量植物-1和植物高度的最佳交叉是Sakha105×Sakha102,Sakha105×Sakha108和Sakha108×Sakha109。进行聚类分析也表现出分为四组的基因型。第一组仅包括大米基因型Sakha109和Sakha108。这些品种是由共同的父sakha101产生的,可以具有三个定量性状的遗传关系(旗叶面积,1000粒粒度和圆锥体重量)。包括Sakha 102和Sakha 106的第二组具有非常相似的遗传背景,因为两个品种共享一个共同的父母,Giza 177。此外,这两个水稻品种的分ers植物的植物数量为-1、1000粒重量,而圆锥花序植物-1。第三组仅包括属于Indica-Japonica品种的Giza 179。第四组由不同父母生产的Sakha 105。关键字:水稻(oryza sativa L.),育种,能力,遗传变异,遗传潜力,基因型和表型方差,遗传力
大米注释项目数据库(RAP-DB)已为水稻基因提供了20多年的功能注释。在过去的一年中,我们通过彻底审查相关文献手动策划和更新了有关大约700个基因座外显子内结构和功能的信息。迄今为止,我们已经为大约6,000个基因座策划了大米基因信息。值得注意的是,为了响应用户反馈,我们最近修改了1,000多个核苷酸结合亮氨酸重复的基因注释,其中包含Gottin等人报道的含有受体基因。(2021)。此外,为了提高文献策划的效率,我们将自然语言处理技术集成到了工作流程中。一个新开发的系统利用AI模型来识别包含水稻基因相关信息的出版物,从而大大加快了策展过程。以下数据和功能将在不久的将来提供。1)基于氨基酸序列的相似性和同步的模型作物(例如小麦,玉米和大豆)的直系同源基因候选基因。这些信息将可以通过每个基因页面访问,从而可以在物种之间使用农艺上重要的基因信息。2)用户反馈系统:将启动一个反馈系统,以允许用户贡献其他文献参考,功能注释或对基因结构提出的更正。这将促进社区驱动的更新,并确保RAP-DB仍然是大米基因的全面资源。我们希望这些更新将使RAP-DB成为水稻基因组学研究的用户友好和可靠的资源。请遵循我们的X帐户(@rapdbjp),我们在其中发布有关水稻相关研究的信息,RAP-DB上的更新等。
抽象作物植物对压力的反应涉及基因表达模式的变化。这种基因调节的复杂过程取决于顺式和反式作用成分的存在。理解与植物对胁迫反应相关的基因表达变化的关键步骤之一始于鉴定差异表达基因(DEGS)启动子中“保守域”的鉴定。保守域可以通过为转录因子提供结合位点在基因调节中起关键作用。在这项研究中,我们旨在确定149摄氏度的启动子中的顺式调节元件(CRE),这些元素在两个水稻品种的转录组分析中被鉴定出来:cypress and Lagrue。这两个水稻品种根据其承受热应激的能力,在高夜晚(HNT)下分别表现良好。可以预期,受Hnt应力向上或向下调节的DEG要么在其启动子中表现出一组共享的CRE,要么在特定DEG模式中共有多态模式,其识别可以帮助理解植物对压力的各种反应。将使用多种计算方法来找到与水稻中HNT应力有关的顺式作用元件 /转录激活基序。这些信息将在机器学习算法中利用,以开发针对繁殖目的操纵基因的预测模型,例如提高谷物质量和产量,从而增强了水稻植物对高夜间温度的韧性,并为水稻作物的整体适应性做出了贡献。
摘要:大米是世界上消费量最大、贸易量最大的食品,因此根据其品质对其进行正确分类非常重要。本研究旨在利用信息技术系统对大米进行品质分类。在本研究中,通过对从两种不同水稻品种的图像中获得的特征进行统计分析,应用了特征选择过程。分类过程采用五种不同的人工智能 (AI) 算法,使用 6 种不同的形态特征。检查结果和性能值时,发现支持向量机 (SVM) 算法的分类准确率最高,为 93.53%。获得的曲线下面积 (AUC) 值表明,分类结果非常高,达到 99.18%。发现形态特征是使用 AI 算法对水稻品种进行分类的非常重要的参数。人们普遍认为,这项研究对于加速产品分类过程(这是农业营销的主要组成部分之一)和正确分类农作物具有重要意义。
世纪,以富裕和营养食品的养育人群喂养不断增长的人群。除了主要农作物 - 大米,小麦和玉米 - 探索具有更多营养价值的孤儿/天然作物很重要(Chaturvedi等,2022; Chaturvedi等,2023)。生物应激源,包括真菌,细菌,线虫,昆虫和病毒;以及由于气候变化而加剧了土壤中的干旱,热,冷,盐度,流量和养分含量等非生物限制条件(Ghatak等,2017; Chaturvedi等,2021)。开发和利用多种弹性作物对于在所有环境限制下确保粮食安全至关重要。在环境限制下增加高产农作物,这是由于选择中的角色的遗传力较低而令人生畏。确定更多的重要特征可以赋予各种压力的宽容,这是科学家和育种者的主要目标(Roychowdhury等,2020)。因此,我们的研究主题“表征和改善了弹性作物发展的特征”,包括14种手稿,可为作物遗传资源,定量特质基因座(QTL)映射(基因组全基因组关联研究(GWAS),单倍型分析,多摩学分析,多摩学分析,基因发现,表达发现,高级遗传学特征化工具)提供新的见解。植物疾病每年在主要农作物中造成约30%的收益率损失(Gangurde等人)。在当前的气候情况下,许多疾病正在出现,在未来几十年中,农作物的可持续性恶化了(Chakraborty等,2014)。)。gwas已被用来有效发现与多种作物抗病的抗性相关的QTL(Gangurde等人Gangurde等。在过去的二十年中汇编并强调了成功的GWAS研究。他们的研究主要集中于提高通过