盐和干旱胁迫一直是限制农业生产的重要因素,而SA是应激反应涉及的重要酚类,但是SA对稻米的双重盐和大米中的干旱胁迫的功能尚不清楚。在这项研究中,通过检测生理和生化指数以及盐和干旱耐受性基因的表达,研究了对稻米对双盐和干旱胁迫的外源SA触发的影响和机制。结果表明,SA的应用可以显着增加盐和干旱胁迫下水稻幼苗的抗氧化酶活性,从而减少米H 2 O 2和MDA的含量并维持水稻幼苗的生长。Moreover, the expression of genes involved in the response of abiotic stress, such as OsDREB2A, OsSAPK8, OsSAPK10 and OsMYB2 , were up-regulated under salt and drought treatment, and SA application could further enhance the expression of those genes like OsDREB2A and OsSAPK8 , suggesting that SA might regulate antioxidant enzyme activity via inducing the expression of salt and drought tolerance基因并增强大米的盐和干旱耐受性。结果将丰富SA功能的知识,并提供了研究大米盐和干旱性中SA机制的参考,并使用改善的盐和耐干旱的盐分繁殖新的水稻种质。
摘要气候变化与主要农作物产量之间的复杂关系对当代食品生产系统构成了紧迫的挑战。认识到不同作物对气候压力源的多种反应,有必要调查气候引起的各种作物产量转移的影响。侧重于极端天气对粮食安全的影响,该研究采用多种规范来评估气候变化对主要农作物的影响(泥,高粱,大米,小麦,甘蔗,香蕉和豆类),使用1991 - 2019年的年度数据在索马里。自回旋分布滞后(ARDL)方法的经验发现表明,增加的降水量增加对高粱,甘蔗和香蕉的长期产量产生积极影响,同时对豆类产生产生不利影响。相反,尽管它们在短期内增强了大米和高粱的产生,但温度的变化会有害影响高粱,大米和豆类的长期输出。有趣的是,这项研究表明,温室气体(GHG)排放和收获的区域可显着提高各种农作物的产量。此外,农业劳动力对香蕉产生积极影响,同时阻碍其他作物产量。基于这些结果,该研究提议采用气候富农作物品种,灌溉基础设施的投资,增强的天气预测和预警系统,以及促进可持续土地管理。
比大米中的默认多项式形式,并选择类似于Weitzman(2009)的指数损坏。7此表述自然来自随机编程,例如,例如Wets(1989)。8有关讨论,请参见Shiell(2003)。
南亚的大米 - 小麦种植系统分别占全球大米和小麦生产的27%和16%,并维持超过1.29亿农民,其中大多数是小农户1。然而,由于气候变化的影响,该地区的大米和小麦产量趋势减慢或停滞了,这些负面影响预计在未来几十年中会恶化2。到2050年,南亚将成为最大的食品缺陷地区之一,因此需要大量生产来满足不断增长的粮食需求。作为解决这一即将发生的危机的一种潜在解决方案,气候智能农业(CSA)已被政府,研究人员以及粮食和农业组织广泛提倡。研究表明,CSA实践和技术可以增加农作物的产量,同时减少温室气体排放,并增加农业社区对气候冲击的弹性3,4。尽管有CSA的承诺,但大多数CSA实践和技术尚未在南亚5 - 7中被广泛采用。尽管有一些实践和技术已经使用了很长时间(例如,农作物多样化和绿肥),但尽管有证明其有效性,但许多其他实践和技术仍在努力获得动力(例如,零耕作,替代性润湿和干燥)。在这里,我们确定了南亚CSA实践和技术采用较低的关键原因,并提出了一系列有希望的策略,这些策略可能会增加其大规模的采用(图1)。
人工智能(AI)今天占据了中心排名,尤其是在技术进步无处不在的情况下。在最有影响力的工具中,深度学习已经在专业和学术领域中建立了自己。本文着重于卷积神经网络在检测与大米竞争的杂草方面的有效性。为了实现这一目标,将预训练的Inception_V3模型的扩展用于图像分类,而Mobilenet则用于图像处理。这种创新的方法在大米和杂草之间有挑战性的稻田上进行了测试,这是AI领域的重大进步。然而,两种模型的训练都揭示了局限性:Inception_V3在第10次迭代后表现出过度拟合,而Mobilenet在第一次迭代中表现出较高的波动性和过度拟合。尽管面临这些挑战,但Inception_V3还是以其出色的准确性而脱颖而出。
种子的纯度是决定作物产量,价格和质量的农业中最重要的因素。大米是全球不同形式消费的主要主食。识别高产和高质量的稻田是一项具有挑战性的工作,主要取决于昂贵的分子技术。基于分子实验室技术的实际和日常用法非常昂贵且耗时,并且还涉及几个后勤问题。此外,稻草农民不容易获得这样的技术。因此,需要开发替代,易于访问和快速的方法来正确识别稻田种子品种,尤其是商业重要性。我们已经开发了基于种子图像的IRSVPRED,深度学习,以识别和差异化十种Basmati大米的十种主要品种,即Pusa Basmati 1121(1121)(1121),Pusa Basmati 1509(1509)(1509),Pusa Basmati 1637(1637) ),耐盐的basmati大米品种CSR 30(CSR-30),DEHRADOON BASMATI TYPE-3(DHBT-3),PUSA BASMATI-1(PB-1)(PB-1),PUSA BASMATI-6(PB-6),Basmati -370 -370 (BAS-370),PUSA BASMATI 1718(1718)和PUSA BASMATI 1728(1728)。该方法在训练集(总计61,632张图像)和内部验证集(总计15,408张图像)上的总体准确度分别为100%和97%。此外,研究中使用的所有十个品种(642张图像),已经达到了大于或等于80%的精度。irsvpred Web-Server可以在http://14.14.139.62.220/rice/上免费获得。
2 天前 — (4)防卫大臣保健监察长、防卫政策局局长、采购技术后勤局局长(以下简称“防卫省停职权”)…… 依据吴物产补给站大米及食品标准手册。1 内容及包装:1EA=100g 以上……
自然栖息地转换为农业是生物变化的主要驱动因素之一。马达加斯加也不例外,主要由砍伐农业驱动的土地利用变化正在影响该岛的现实生物多样性。尽管大多数物种会受到农业扩张的负面影响,但有些物种(例如Synathropic Bats)能够探索新近获得的资源和人造农业生态系统的新资源。作为蝙蝠是农业害虫的已知捕食者,似乎有可能在农业地区优先觅食,因此可以提供重要的害虫抑制服务。为了调查蝙蝠作为害虫抑制剂的潜在作用,我们在2015年11月和2015年12月在马达加斯加的Ranomafana国家公园及其周围进行了昆虫性蝙蝠的声学调查。我们调查了五种土地覆盖类型:灌溉大米,山坡大米,二次植被,森林碎片和连续的森林。9569蝙蝠通过了19种的区域组合。同时,我们从六种最常见的蝙蝠种类中收集了粪便,以使用DNA元法编码在饮食中检测害虫物种。与森林和属于开放空间的蝙蝠相比,稻田的总蝙蝠活性更高,而边缘空间的声音型是森林转换为山坡和灌溉大米最有益的。检测到的其他农作物包括Su-Garcane cicada Yanga guttulata,澳洲坚果坚果 - thaumatotibia thaumatotibia batrachopa和清醒的Tabby Ericeia inangulata(柑橘果实的害虫)。在收集的粪便样品中检测到了两个重要的大米害虫 - 在Mops Leucogaster样品中检测到稻草虫虫毛虫毛虫,而Grass Webrew虫疱疹丙sis虫的丙sisasalis被从摩托车的朱ugarulus jugularis and Miniiopterus andipterus samples中脱离。所有BAT物种的样品还包含来自重要的昆虫疾病载体的读物。根据我们的结果,我们认为马达加斯加昆虫的蝙蝠有可能抑制农业害虫。重要的是要保留和最大化马达加斯加蝙蝠的种群,因为它们可能有助于更高的农业产量并促进可持续的生计。