摘要 菌毛介导的初始粘附是产肠毒素大肠杆菌 (ETEC) 感染所需的初始和关键步骤。因此,已经开发出针对这些菌毛并诱导特异性抗菌毛抗体以阻断 ETEC 初始粘附的候选疫苗。虽然这种疫苗可以有效预防 ETEC 相关的断奶后腹泻 (PWD),但由于这些抗原之间的免疫异质性,开发一种广泛有效的针对 ETEC 初始粘附的疫苗仍然是一个具有挑战性的问题。在这里,我们应用多表位融合抗原 (MEFA) 技术构建了 FaeG–FedF–FanC–FasA–Fim41a MEFA,使用主要菌毛 K88 和 F18 的粘附亚基作为骨架,它还整合了来自稀有菌毛 K99、987P 和 F41 的粘附亚基的表位;然后我们生成了一个 MEFA 计算模型并在免疫小鼠中测试了这种 MEFA 蛋白的免疫原性。接下来我们通过体外评估其抗菌毛、抗体导向的细菌粘附抑制作用,评估了针对菌毛的 MEFA 作为疫苗候选物有效预防 PWD 的潜力。计算模型表明,所有相关表位都暴露在 MEFA 表面,并且用 MEFA 蛋白皮下免疫的小鼠产生了针对所有五种菌毛的 IgG 抗体。此外,MEFA 蛋白诱导的抗菌毛抗体显著抑制了 K88 + 、F18 + 、K99 + 、987P + 和 F41 + ETEC 菌株对猪小肠 IPEC-1 和 IPEC-J2 细胞系的粘附。综合起来,这些结果表明 FaeG–FedF–FanC–FasA–Fim41a MEFA 蛋白诱导了针对五种目标菌毛的特异性抗菌毛中和抗体。至关重要的是,这些结果显示了菌毛靶向 MEFA 的潜力,并表明它们有望成为一种广泛有效的 PWD 疫苗。关键词:ETEC、PWD、菌毛、MEFA、疫苗
营养物质的可用性是调节细胞整个代谢的关键因素。因此,养分的缺乏激活了特定的适应机制。严格的反应是控制和调节细菌应力条件适应的基本机制之一。严格的响应效应子是特定的核苷酸,四磷酸鸟苷和五磷酸鸟苷,统称为(p)PPGPP。These nucleotides, in E. coli , are synthesized by RelA and SpoT proteins using two different pathways, where RelA produces (p)ppGpp in response to the presence of uncharged tRNA in the ribosomal A-site, during amino acid starvation, or in response to pyruvate depletion during fatty acid starvation ( Kushwaha et al., 2019 ; Sinha et al., 2019 ).另一方面,斑点负责响应葡萄糖或脂肪酸饥饿以及其他几种压力条件(Potrykus and Cashel,2008年),负责(P)PPGPP的积累。此外,斑点也充当A(P)PPGPP水解酶(Potrykus and Cashel,2008年)。
Tigecycline(TGC),第三代四环素被认为是针对多药抗性细菌的最后防御。最近对TGC的抗药性率提高了,动物细菌中的人限制药物构成了重大的全球健康挑战。已经提议过度使用第一代四环素(TET)和动物中的苯酚与TGC耐药性发展有关。在当前的研究中,我们旨在确定四环素(TET)和氯霉素(CHL)过度暴露对TGC敏感性的影响。k的TET和CHL敏感的分离株。肺炎E和E。大肠杆菌分别暴露于四环素和氯霉素的浓度,直到观察到TET和CHL MIC的4倍。使用盘扩散和肉汤稀释方法测试了几种抗菌剂的易感性变化。编码主要ACRAB调节剂的基因的遗传改变,包括ACRR(ACRAB的阻遏物),RAMR(RAMA的阻遏物),SOXR(Soxs的阻遏物)(SOXS)。肺炎和LON(MARA的蛋白水解降解),Marr(Mara的阻遏物),ACRR和SOXR。大肠杆菌。使用逆转录 - 定量聚合酶链反应(RT-QPCR)方法测量ACRB的表达水平。对两种抗生素的细菌过度暴露(15至40个选择周期)显着降低了E的TET耐药性(R)和E的CHL-R变体的敏感性。大肠杆菌(n = 6)和k。肺炎(n = 6),包括几组抗体,包括Tigecycline(分别为4-16次和8-64次)和喹诺酮。约有58%的变异(n = 7)在Acrab调节剂中带有遗传改变,包括RAMR(移率突变/基因座缺失),MARR(L33R,A70T,G15S,G15S氨基酸取代)和LON(L630F,L630F,LON,LON,FRAMESHIFT变化),这些变化与Acrivbb upnculation相关。我们的研究证明了氯霉素和四环素暴露在选择突变体中的能力,这些突变体揭示了Tigecycline抗性/降低的敏感性,主要是由主动排出机制介导的。在某些菌株中未改变的ACRB表达水平表明其他外排泵或基于非效能的机制在多抗生素耐药表型的发展中的贡献。
各种各样的微生物激发了它们行为的基本研究,有可能构建人工模仿。一个突出的例子是大肠杆菌细菌,它采用多个螺旋鞭毛表现出一种运动模式,在奔跑(方向游泳)和滚落型(游泳方向变化)相之间交替。我们建立了一个详细的大肠杆菌模型,该模型将耗散性粒子动力学方法描述为流体流,并研究其运行式行为。不同的大肠杆菌特征,包括身体几何形状,鞭毛弯曲刚度,鞭毛的数量及其在体内的排列。还进行了实验,以直接与模型合并。有趣的是,在模拟和实验中,游泳速度几乎与鞭毛的数量无关。钩子(将其直接连接到电机连接的鞭毛的短部分),鞭毛的多态性变换(鞭毛螺旋性的自发变化)的刚度以及它们在身体表面的排列强烈影响运行的行为。使用开发模型的中尺度流体动力学模拟有助于我们更好地理解支配大肠杆菌动力学的物理机制,从而产生与实验观察结果相比良好的运行式行为。该模型可以进一步用于探索大肠杆菌和其他细菌在更复杂的现实环境中的行为。
头部和颈部鳞状细胞癌(HNSCC)源自口腔,咽和喉的粘膜上皮,是头部和颈部最常见的恶性肿瘤(1)。HNSCC是全球第六大癌症,2018年有890,000例新病例和450,000例死亡。HNSCC的发病率继续升高,预计到2030年,预计将增加30%(每年为108万例新病例)(2)。由于头部和颈部复杂的解剖结构,超过50%的HNSCC患者在临床III期或IV期被诊断出,生存率仅为40〜50%。此外,局部复发或转移也导致HNSCC的预后不佳(3)。多模式治疗包括手术,放疗,化学疗法和分子靶向疗法。尽管对治疗方法进行了持续的创新,但仍然存在诸如不足的效率和过度毒性等问题(4)。最近对免疫功能障碍在HNSCC中的作用的最新了解已迅速确立了免疫疗法(IMT)作为有前途的治疗途径(5)。单克隆抗体(MAB)抗编程死亡蛋白1(抗PD-1)Nivolumab和pembrolizumab是批准用于治疗患者的第一个免疫检查点抑制剂(ICI)(ICIS)。抗编程的死亡配体1(抗PD-L1)检查点抑制剂,例如Durvalumab和avelumab等检查点抑制剂(8)。不幸的是,HNSCC的最佳制度仍不清楚。特别是,PD-1治疗作用是由与T淋巴细胞的结合介导的,导致全身作用,而抗PD-L1治疗的活性则针对在肿瘤细胞上表达的受体(9,10)。免疫检查点分子细胞毒性T淋巴细胞抗原4(CTLA-4)(如tremelimumab和ipilimumab)也已用于HNSCC(11)。许多建议基于单一RCT结果或抗PD-1/PD-L1途径IMT荟萃分析。在这篇综述中,我们评估了RCT,评估了通过系统的综述和荟萃分析评估HNSCC患者免疫疗法的效率和安全性。将通过总生存率(OS),无进展生存率(PFS),总反应率(ORR),反应持续时间(DOR)(12)和与治疗相关的不良事件(TRAES)评估全身治疗的活性。
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
摘要:近年来,由于其治疗潜力和多功能性在药物化学中,有机苯苯甲酸盐引起了很大的关注。在这里,我们报告了5-苯基碳酰甲基戊烯基硒酸(SELSA-2)抑制的机制,这是特征良好的组蛋白脱乙酰基酶抑制剂suberoylanilide suberoylanilide hydroxamic的类似物(Sahavorinostat)。我们表明,组蛋白脱乙酰基酶6和10可以促进硒氰酸酯水解产生硒酸盐阴离子,并且我们通过可逆形成二苯胺来调节抑制活性,探索硒的氧化还原化学。组蛋白脱乙酰基酶6的2.15Å分辨率晶体结构与SELSA-2结合结构,最终证明它不是硒氰酸酯,而是硒酸盐阴离子,这是负责酶抑制的活性药理。
SEQ时间序列。22(左)通过表达相似性排序的相对表达的热图,
Marfan综合征(MFS)是一种遗传性疾病,影响结缔组织,主要是骨骼,眼睛和心血管系统等。主动脉病理是Marfan综合征患者死亡的主要原因。纤维蛋白-1基因(FBN1)是参与MFS发病机理的主要基因。已经表明,MF的主动脉发病机理与转化生长因子β(TGF-β)信号通路的失衡有关。但是,MFS的确切分子机制尚不清楚。动物模型可能部分模仿MFS,对MFS的研究至关重要。几种动物已用于MFS研究,包括小鸡,牛,小鼠,猪,斑马鱼,秀丽隐杆线虫和兔子。这些模型是自发开发的,或与基因工程技术结合使用。本综述是为了描述MFS中的TGF-β信号传导途径,以及动物模型在为MFS患者提供新的治疗策略的潜在应用。