背景:使用文本报告向父母和对赔偿权提出异议的法律专业人士传达患有长期缺氧缺血性损伤 (HII) 的儿童的双侧、对称性和区域性皮质脑萎缩可能很困难。使用标准的横截面图像向外行人解释双侧、区域性脑成像也具有挑战性。大脑表面的单一平面图像,就像从地球仪中得出地球地图一样,可以通过磁共振成像 (MRI) 扫描的曲面重建生成,即墨卡托地图。外行人在未经事先培训的情况下识别异常“墨卡托脑图”的能力需要在非医疗环境中使用前进行评估。目的:确定外行人在未经事先培训的情况下检测异常儿童墨卡托平面脑图的灵敏度和特异性。方法和材料:向 111 名参与者分别提供 10 张墨卡托脑图。这些地图包括 5 个 HII、1 个皮质发育不良和 4 个正常病例。参与者需要识别异常扫描。计算了总体和参与者亚组的敏感性和特异性。结果:总体敏感性和特异性分别为 67% 和 80%。普通放射科医生(n = 12)的敏感性和特异性分别为 91.2% 和 94.6%。外行人(n = 54)的敏感性为 67%,特异性为 80%。结论:放射科医生的高特异性和敏感性验证了该技术在区分皮质病理异常扫描方面的有效性。外行人使用墨卡托地图识别异常大脑的高特异性表明,这是一种向外行人展示儿童 HII 皮质 MRI 异常的可行沟通工具。
1. 首先将双手举起,摆动手指,并用嘴巴发出柔和的呼呼声 2. 反复搓手掌 3. 打响指 4. 拍大腿,左右交替 5. 拍手或跺脚 6. 大声拍手 7. 然后反转……直到回到摆动手指和柔和呼呼的声音! 8. 你刚刚制造了一场暴风雨!
理论上,权力体验可以增加对奖励的关注,但事实真的如此吗?虽然这是一个普遍的假设,但没有一项研究直接调查权力对奖励关注的影响。此外,调查权力对与奖励相关的行为的影响的研究并没有将奖励与可能的替代目标分开。因此,本文直接研究了权力是否会在将奖励与可能的替代目标移除/分离的同时增加个人对奖励的关注。通过七项使用多种范式和方法(即自我报告、概念激活、鼠标跟踪和脑电图)的研究,我们的结果几乎没有支持心理权力增加对奖励关注的假设。我们的主要结果得到了贝叶斯分析和跨研究荟萃分析的补充。本文的研究结果与那些试图解释权力与不道德行为之间联系的人高度相关,其中对奖励的关注增加被认为发挥了作用。我们的结果表明,需要探索其他可能的机制来确定强者行为背后的驱动力。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。
分析仅限于临床领域和生物医学,心理或行为研究。如今,通过越来越多的Conumer级神经技术设备,大脑数据也越来越多地用于就业,教育和军事环境以及个人使用。在消费者空间中,信息技术公司正在开发用于用于消费者目的的大脑数据的设备和应用程序,例如认知监测,神经反馈,设备控制或其他形式的脑部计算机接口。例如,在2017年至2021年之间,Facebook开发了脑部计算机界面(BCI)研究计划,旨在构建可穿戴的BCI,使用户可以通过简单地想象语音来键入。Microsoft正在为普通人群的非侵入性交互式BCIS并行工作,而神经技术公司(例如Neuralink,Emotiv和Nemiv和kernel)的整个生态系统正在迅速出现。消费者神经技术,电子学习,数字表型,情感计算,心理学和神经元素是利用大脑数据作为商品的某些应用领域[1,2]。在教育和工作环境中,已经尝试收集和处理大脑数据以进行诸如改善学习和重新设计工作流程之类的内容。例如,去年,在中国,小学生被录取了一项试验,在该试验中,在认知任务期间记录了电脑图(EEG)数据以评估他们的注意力跨度[3]。
我们将要记录的信号称为心电图,也称为 ECG 或 EKG,它是对心脏不同部位按受控顺序收缩的协调“电波”的测量。由于心脏由专门的肌肉细胞组成,这些肌肉细胞会激发动作电位来收缩,因此我们可以采用与之前测量骨骼肌收缩大致相同的方式测量这些动作电位。但这些动作电位的持续时间为 200 毫秒,比神经元(1 毫秒)和肌肉(3 毫秒)的动作电位慢得多。此外,神经元和肌肉的脉冲以每秒脉冲数(或 Hz)来衡量,但心脏的脉冲以每分钟心跳数 (BPM) 来衡量。动作电位心肌细胞也使用钠和钾,但钾通道需要更长的时间才能打开,从而导致更长的动作电位。
在这项研究中,我们将概述近年来我们所做的有关语言和语音生产的神经解剖学相关性的实验工作。首先,我们将介绍与事件相关的功能磁神经成像和我们使用的实验范式的方法。然后,我们将介绍并讨论有关(1)语音运动控制,(2)发音复杂性,(3)韵律的神经解剖学相关性的实验结果,以及(4)义大利处理的神经认知底物。实验(1)和(2)表明,由SMA,运动皮层和小脑组成的预期大型运动语音网络仅在计划和执行简单的关节运动方面活跃。提高的关节复杂性会导致更集中的激活。此外,我们可以证明,只有语音运动的执行才能招募左前岛,而发音计划则没有。实验结果(3)的结果表明,控制韵律处理的横向化不是韵律(语言与情感)的功能,而是处理单元的更一般特征,例如韵律框架的大小,造成了不同皮质区域的激活。最后,在实验(4)中,我们提出了语音生产中句法处理的第一个结果。除了预期的Broca区域激活外,我们还发现了Wernicke地区和小脑中的激活。我们还找到了其他皮质区域激活的证据,这些证据少于脑力相关性的临床研究。这些领域和网络的认知相关性仍有待阐明。Q 2001 Elsevier Science Ltd.保留所有权利。Q 2001 Elsevier Science Ltd.保留所有权利。
神经科学的最新进展强调了多模式医学数据在研究某些病理和了解人类认知方面的有效性。但是,获得一组不同的模态的完整集受到各种因素的限制,例如长期获取时间,高检查成本和伪影抑制。此外,神经影像数据的复杂性,高维度和异源性仍然是有效地利用现有随机扫描的另一个关键挑战,因为不同机器通常对相同方式的数据进行了不同的测量。显然需要超越传统成像依赖性过程,并从源中综合解剖学特定的目标模式数据。在本文中,我们建议学习使用新型CSCℓ4NET跨内部和模式内变化的专用特征。通过特征图和多元典范适应性中的模态数据的初始统一,CSCℓ4净4净促进了特征级别的相互转换。正定的riemannian歧管 - 惩罚数据限制项进一步使CSCℓ4NET可以根据变换的特征重新构建缺失测量值。最后,最大化ℓ4 -norm沸腾到计算上有效的优化问题。具有较大的实验可以验证我们的CSCℓ4NET的能力和鲁棒性与Multiple数据集中的最新方法相比。
