一些认知能力被认为是复杂社会生活的结果,这种社会生活使个体能够通过先进的策略实现更高的适应性。然而,大多数证据都是相关的。在这里,我们进行了一项实验研究,研究群体大小和组成如何影响孔雀鱼 (Poecilia reticulata) 的大脑和认知发育。在 6 个月的时间里,我们按照 3 种社会处理方法中的一种饲养性成熟的雌性:一个小的同类群,由 3 只孔雀鱼组成;一个大的异类群,由 3 只孔雀鱼和 3 只溅斑灯鱼 (Copella arnoldi) 组成——一种在野外与孔雀鱼共存的物种;以及一个大的同类群,由 6 只孔雀鱼组成。然后,我们测试了孔雀鱼在自我控制 (抑制控制)、操作性条件反射 (联想学习) 和认知灵活性 (逆向学习) 任务中的表现。使用 X 射线成像,我们测量了它们的大脑大小和主要大脑区域。 6 只个体组成的较大群体(包括同种群体和异种群体)表现出比较小群体更好的认知灵活性,但在自我控制和操作性条件反射测试中没有差异。有趣的是,虽然社交操纵对大脑形态没有显著影响,但相对较大的端脑与更好的认知灵活性相关。这表明,除了大脑区域大小之外,其他机制使来自较大群体的个体具有更大的认知灵活性。虽然没有明确的证据表明对大脑形态的影响,但我们的研究表明,生活在较大的社会群体中可以提高认知灵活性。这表明社会环境在古比鱼的认知发展中发挥着作用。
要检查此证书有效性,请致电+46 31 60 65 00有关此证书范围的进一步澄清以及可以通过咨询组织获得管理系统要求的适用性。
大脑功能依赖于脉冲神经元回路,其中突触在融合传输与记忆存储和处理方面发挥着关键作用。电子技术在模拟神经元和突触方面取得了重要进展,而将大脑和受大脑启发的设备连接起来的脑机接口概念也开始实现。我们报告了大脑和硅脉冲神经元之间的忆阻连接,这些连接模拟了真实突触的传输和可塑性。与金属薄膜氧化钛微电极配对的忆阻器将硅神经元连接到大鼠海马的神经元。忆阻可塑性解释了连接强度的调节,而传输则由通过薄膜氧化物的加权刺激介导,从而产生类似于兴奋性突触后电位的反应。反向大脑到硅的连接是通过微电极-忆阻器对建立的。在此基础上,我们展示了一个三神经元脑硅网络,其中忆阻突触经历由神经元放电率驱动的长期增强或抑制。
英国研究人员卡顿(1)在1875年设法测量了兔子和猴子大脑中的自发电活动,1924年,德国神经精神病学家汉斯·伯格(Hans Berger)首次通过人头皮肤获得了贝伊(Bey)的电记录。汉斯·伯杰(Hans Berger)于1929年发表了这项研究(2)。Hans Berger在第一批记录中定义了Alpha(8-13 Hz)和Beta(15-30 Hz)的波,并将此电气记录称为“脑电图”(EEG)。大脑中的神经细胞与电连接相互通信,并且在获取细胞记录时,可以测量突触后的抑制剂,退出器突触电位后出口并最终导致动作电位。当有效电极连接到头骨上并作为第二电极中的参考电极连接时,测量该电极下神经细胞的所有电气集体活性。这些记录在大脑头皮上拍摄的记录是不正确的复杂信号。这些信号取决于人类的瞬时大脑活动,时间,频率和拓扑差异。汉斯·伯格(Hans Berger)表明,即使在第一次记录期间,枕骨闭嘴,大脑的视觉区域,阿尔法波也有所增加。在Alpha和Beta波之后,1936年,Walter(3)定义了Delta(0.5-3.5 Hz)和TETA(4-7 Hz)波,所有频带在1938年被命名为Gamma波(4)。今天,在许多书籍中,这些频带已成为任务说明
心理学家扎卡里·罗珀和他的团队与两组志愿者合作:13 至 16 岁的青少年和 20 至 35 岁的成年人。每个志愿者都必须玩一种游戏。在训练阶段,计算机会显示六个圆圈,每个圆圈颜色不同。玩家必须找到红色或绿色的圆圈。这些目标里面有一条水平线或垂直线。其余圆圈有其他角度的线。当参与者找到正确的目标时,他们必须按下键盘上的两个键之一。一个键会报告他们找到了垂直线。另一个键报告找到了一条水平线。
为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
高海拔(HA)(将其定义为海拔2500 m以上的海拔高度),由多种恶劣的环境条件进行了特征。大多数生理适应发生在响应大气压力下的响应,导致氧气压力降低并导致血液氧化饱和度降低(SPO 2),低氧血症。大脑容易受到氧气供应改变的影响。因此,HA暴露会导致情绪状态的不良变化,例如抑郁症[1]和焦虑[2],以及神经认知的改变,例如记忆障碍[3]以及短期和长期HA暴露后的注意力障碍[4,5]。尽管许多报道涉及在上升到HA后发生的生理和神经系统改变,但对HA的长期和永久居民的认知和脑改变的研究较少。大脑功能不仅受到上升后的缺氧影响[6] [6],而且在HA [7]和天然高地的长期暴露后也受到了影响[8]。在暴露于HA的未批准的个体中,睡眠方式可能已经在1600 m以上的海拔高度上受到影响,在某些人的2500 m ON和3000 m以上的受试者中,情绪状态的变化会在某些个体中观察到欣快感或抑郁症的变化。情绪状态改变,包括欣快,争吵,烦躁和冷漠,在快速急性暴露于HA并在48至52 h后返回基线状态后暂时发生[9-11]。In contrast, short- and long-term exposure to HA causes biological, inflam- matory, and structural brain changes that increase the risk of experiencing anxiety and depression symptoms [ 12 ] and neurocognitive dysfunctions such as slower reaction times, reduced attention (>3500 m), impaired learning, spatial and working memory (>4000 m), and impaired retrieval (>5500 m) (Figure 1 ) [ 7 , 8、13、14]。
最近的研究表明,怀孕和父母身份的转变对人类大脑结构特征有显著影响。在这里,我们介绍了一项全面的研究,研究了父母身份和出生/父亲的孩子数量与 36,323 名英国生物库参与者(年龄范围为 44.57 – 82.06 岁;52% 为女性)的大脑和细胞衰老标志之间的关联。为了评估父母身份对大脑的整体影响,我们在 T1 加权磁共振图像上训练了一个 3D 卷积神经网络,并在保留的测试集中估计了大脑年龄。为了研究区域特异性,我们使用 FreeSurfer 提取了皮质和皮质下体积,并运行了层次聚类以根据协方差对区域体积进行分组。来自 DNA 的白细胞端粒长度 (LTL) 被用作细胞衰老的标志。我们采用线性回归模型来评估孩子数量、大脑年龄、区域大脑体积和 LTL 之间的关系,并包括交互项以探究关联中的性别差异。最后,我们将大脑测量值和 LTL 作为二元分类模型中的特征,以确定大脑和细胞老化的标志是否可以预测父母身份。结果显示,无论男女,出生/父亲的孩子数量越多与大脑年龄越小之间存在关联,女性的影响更大。基于体积的分析显示,纹状体和边缘区域存在母体效应,而父亲则没有。我们没有发现孩子数量与 LTL 之间存在关联的证据。父母身份分类显示大脑年龄模型的 ROC 曲线下面积 (AUC) 为 0.57,而使用区域大脑体积和 LTL 作为预测因子的模型显示 AUC 为 0.52。我们的研究结果与之前针对中老年父母的基于人群的研究一致,揭示了父母经验与基于神经影像的大脑健康替代指标之间存在微妙但重要的关联。该研究结果进一步证实了对父母在怀孕和产后进行的纵向队列研究的结果,可能表明父母身份的转变与大脑健康的长期影响有关。
目标:情绪斯特鲁普效应被定义为与中性刺激相比,对情绪刺激的反应时间增加。文献中经常报道这种效应,包括行为和神经生理层面的报道。本研究的目的是调查在情绪斯特鲁普任务中,有精神分裂症和躁郁症风险的个体的大脑前额叶激活情况。我们预计会观察到与健康对照组相比,高危人群的激活程度会降低。方法:精神病高风险(HR)、精神病超高风险(UHR)、躁郁症风险(BIP)个体和健康对照组(HC)执行情绪斯特鲁普任务,其中包括正价、负价和中性词。功能性近红外光谱(fNIRS)用于测量代表背外侧前额叶和额颞叶皮层大脑活动的氧合血红蛋白(O 2 Hb)水平。结果:结果显示,与 HC 组相比,HR 组和 UHR 组的右背外侧前额叶皮层 (DLPFC) 的 O 2 Hb 水平显著降低,表明活动性较低。尽管这种下降与词语的价数无关,但对于负面词语来说,下降最为明显。此外,与 HC 组相比,所有高危人群的额颞叶皮层 (FTC) 中的 O 2 Hb 水平均显著降低。结论:精神病和躁郁症风险人群的 FTC 活动性降低反映了非特异性功能障碍。HR 组和 UHR 组 DLPFC 活动性降低表明,在有精神分裂症精神病风险的个体中已经发现了额叶功能减退。
1. 首先将双手举起,摆动手指,并用嘴巴发出柔和的呼呼声 2. 反复搓手掌 3. 打响指 4. 拍大腿,左右交替 5. 拍手或跺脚 6. 大声拍手 7. 然后反转……直到回到摆动手指和柔和呼呼的声音! 8. 你刚刚制造了一场暴风雨!