摘要 青霉病是影响大蒜采后的主要病害之一。2023年,该病害在泰国清迈府的大蒜[Allium ampeloprasum var. ampeloprasum (Borrer) Syme]采后储藏期间被发现。从大蒜中分离得到3个真菌分离株,根据形态特征和核糖体DNA内部转录间隔区(ITS)、β -微管蛋白(BenA)、钙调蛋白(CaM)和RNA聚合酶II第二大亚基(rpb2)基因组合序列的系统发育分析,鉴定为大蒜青霉菌(Penicillium allii)。在致病性测定中,接种分离真菌的大蒜表现出与采后储藏期间观察到的症状相似的症状。在杀菌剂筛选试验中,多菌灵、苯醚甲环唑 + 嘧菌酯和苯醚甲环唑在半剂量和推荐剂量下均能有效完全抑制该真菌,而该真菌对克菌丹和代森锰锌不敏感。此外,多菌灵、氧氯化铜、苯醚甲环唑与嘧菌酯的组合以及苯醚甲环唑单独使用时,双倍推荐剂量可完全抑制该真菌。据我们所知,这是泰国首次报道由 P. allii 引起的大蒜鳞茎采后蓝霉病。此外,杀菌剂敏感性筛选的结果有助于制定有效的管理策略,以控制由 P. allii 引起的大蒜鳞茎采后蓝霉病。
癌症是一种死亡率极高的可怕疾病,在当今社会,每年夺走成千上万人的生命。传统的癌症疗法因其严重的副作用和缺乏特异性而臭名昭著。在肿瘤发展的背景下,癌症特征代表癌细胞逐渐获得的基本生物学特性。一种有前途的抗癌方法是同时针对多种癌症特征。植物衍生的天然化合物因其结构多样性和最小的毒性而成为开发新型、更有效的抗癌疗法的有前途的资源库。多年来,大蒜 (Allium sativum) 因其已证实的抗癌特性而备受关注。大蒜中的多种生物活性成分,包括有机硫化合物、黄酮类化合物和酚类化合物,对癌细胞表现出不同的作用。这篇综述论文的目的是全面阐明大蒜抗癌作用的机制。本综述中研究阐明的发现不仅有助于更深入地理解大蒜的抗癌特性,而且还为研究人员和医疗保健从业者配制基于天然大蒜化合物的增强型抗癌药物奠定了坚实的基础。
摘要 - 全球农业行业已经面临各种问题,例如人口迅速增长和气候变化。在几个国家中,日本的农业劳动力在下降。为了解决这个问题,日本政府旨在实现应用信息和通信技术,人工智能和机器人技术的“智能农业”。智能农业要求开发机器人技术来进行除草和其他劳动密集型农业任务。机器人除草由一种使用机器学习的对象检测方法组成,以对杂草和农作物进行分类以及使用机器人手和激光器的自主除草系统。但是,这些方法使用的方法会根据作物的生长而改变。除草系统必须根据作物的生长考虑组合。本研究介绍了杂草检测和农作物混合脊(例如大蒜和姜田)中的自主除草。我们首先使用Mask R-CNN开发一种杂草检测方法,该方法可以通过RGB-D相机捕获的颜色图像来检测单个杂草。所提出的系统可以根据检测到的杂草区域和相机捕获的深度图像在物理空间中获得杂草坐标。随后,我们提出了一种指导除草剂操纵器向检测到的杂草坐标的方法。本文通过这两种建议的方法整合了杂草检测和自主除草。我们评估了在实际领域拍摄的图像训练的面膜R-CNN的性能,并证明所提出的自主除草系统在复制的山脊上起作用,其人造杂草类似于大蒜和杂草叶子。
Ilocos粉红色大蒜(IPG)是菲律宾北部Ilocos的当地大蒜品种。最近以其中等β-肾上腺素能受体抑制活性在体内而闻名,仍有有限的研究描述其遗传和代谢物谱,以将其与其他大蒜品种区分开。在这项研究中,使用与序列相关的扩增多态性(SRAP)分析鉴定了IPG的遗传标记。超高性能液相色谱 - 四极杆质谱质谱法,然后使用主成分分析(PCA)将IPG的代谢物与Ilocos天然大蒜区分开。基于其外皮肤上的棕色条纹色素沉着程度,IPG样品可以分为三个 - 轻质,中度和沉重的色素沉着。这些亚组被发现共享七个SRAP标记对 - 即ME1-EM1(300bp),ME1-EM4(400BP),ME2-EM3(500BP),ME3-EM1,ME3-EM1(300BP),ME3-EM2,ME3-EM2,ME3-EM2(400BP),ME3-EM4(AT 200BEM)(AT 200BPP)(在200B)(和200B)(和200B),以及MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES MES。在亚组之间还观察到了唯一的SRAP标记对。pca揭示了与IPG组区分的Ilocos天然大蒜,但是标记矩阵工具仅在RT 1.40时显示出浓度的差异仅仅是M/z 247.129。浓度,可以提出九个标记物,以区分IPG光与IPG中度和重型,其中七个被推定地鉴定为皂苷。这些发现表明SRAP标记可以有效地将IPG区分为亚组,而代谢物分析可能几乎没有洞察IPG和Ilocos天然大蒜之间的差异。
由于病原体抗性以及使用化学农药的高成本和不利的环境影响,研究人员正在寻找其他方法来控制害虫和疾病,例如生物控制。许多研究证明了大蒜植物生化化合物的抗菌作用,但没有关于大蒜植物热稳定蛋白的抗菌活性的报道。考虑到这些蛋白质在应激中的可靠作用,进行了这项研究,以研究这些蛋白质在拉斯托尼亚茄型和链霉菌链球菌细菌上的抗菌作用。使用完全随机的阶乘设计,在单独的实验中测试了每个细菌的抗菌特性,该设计具有三个因素和三个重复。从克隆,组织和应用于甲状腺菌细菌的各种浓度的热稳定蛋白在抑制区的直径和最高抑制区的直径上差异很显着差异,与哈马丹克隆的叶片有关。最低抑制浓度MIC和最小杀菌浓度MBC与Hamadan克隆的叶HSP有关。结果,与其他治疗相关的Hamadan叶具有较小的MIC和MBC以及较大的抑制区显示出最高的抑制作用。在SDS-PAGE电泳中,仅观察到HSP40家族的叶子热稳定蛋白电泳带,而在大蒜丁香家族中,小HSP(SHSP),HSP40,HSP40,HSP70,HSP90和HSP90和HSP100。doi:10.22126/atic.2024.9201.1106©作者2024。Razi University出版结果表明,来自大蒜的热稳定蛋白可以用作针对致病性孢菌细菌的主要抗菌剂,但没有生物学作用作为s. cabies细菌的抗菌剂。本研究的结果表明,大蒜植物的HSP可用于对甲状腺菌细菌产生抗性。
肉鸡的肉饲养短时间(35天)。生产肉鸡时,会出现几个问题,包括生产率低,免疫状态,饲料价格和抗生素限制。抗生素应避免作为生长启动子,以避免抗菌耐药性(AMR)。该政策通过利用称为光生生物的植物元素来刺激肉鸡牲畜的生产力。植物材料的使用旨在降低抗生素耐药性的风险。无法满足法规的抗生素可能会导致残留物积累。除此之外,还有几种传染病,例如纽卡斯尔病(ND)。nd是一种经常影响家禽的疾病,导致产量下降,显着发病率和高死亡率。,以提高免疫力。一种类型的疫苗利用免疫调节补充剂,例如大蒜(Allium sativum),其具有抗炎和增强免疫促进特性。在ND感染期间,补充大蒜粉导致鸡肉胚胎心脏病变的改变。这些修饰包括降低感染的严重程度,其特征是水肿,充血,坏死和中性粒细胞浸润。在ND感染后,1%的大蒜粉可以改善牲畜免疫健康,这是保护性抗体滴度的增加,白细胞数量的下降和淋巴细胞数量的减少所证明的。在1%的大蒜粉治疗组中,脾脏器官的组织病理学揭示了ND感染引起的病理病变严重程度的差异。
草药和香料是天然防腐剂的另一个来源。常见的例子包括大蒜,姜,姜黄和肉桂。这些成分已在各种培养物中使用了几个世纪,不仅是为了风味,而且用于其抗菌特性。大蒜含有大蒜素,一种已知可以与细菌和真菌作斗争的化合物,而肉桂和姜黄则在防止食物中有害微生物的生长方面表现出了有效性。现在将这些天然物质纳入现代食品保存方法中,尤其是在有机和植物性食品行业中[4]。
大蒜素是在氧化过程中起重要保护作用的单个大蒜(葱壁)中的主要含硫化合物。由于其毒性较小,并且在预防几种癌症类型的预后和衰减结局方面具有效力,因此将大蒜素作为乳腺癌的潜在自然疗法。此外,由于N-乙酰半胱氨酸(NAC)和大蒜素的相似结构,它预测大蒜素可能会与NAC产生相同的治疗作用,NAC能够显示出对人类表皮生长因子受体受体(HER-2)乳腺癌的抗肿瘤作用。乳腺癌是女性中最常见的癌症,世界上癌症的第二高癌症可能会使用大呼吸素提供益处,以防止癌症以更好的安全性为预防癌症。然而,很少对大蒜素在HER-2阳性乳腺癌中的功能作用进行研究。在这项研究中,我们使用SILICO研究计算并比较了大蒜素和NAC与HER-2受体的结合能,药代动力学特性以及毒性的毒性,以评估其作为HER-2阳性乳腺癌替代疗法的效力。通过使用molegro虚拟Docker,大紫y和NAC与HER -2受体之间的亲和力表现出相等的结果,用于大鼠素的-62,1239 kcal/mol,NAC的亲和力为-65,8084 kcal/mol。同时,使用PKCSM在线工具研究其药代动力学特性和毒性,表明大鼠素比NAC更安全。因此,可以得出结论,与NAC相比,大蒜素化合物在HER-2阳性乳腺癌中具有相对相同的抗肿瘤效能。此外,大蒜素还具有相当好的药代动力学特征和更耐受的毒性特性,而不是NAC。
摘要:乳腺癌正在成为死亡的主要危险因素,影响数百万妇女。这种癌症会发展出几种理想的特性,这些特性会损害女性中常规乳腺的维持。ER-α蛋白的过度膨胀可以通过刺激生物体中的雌激素基因表达来驱动,这可能导致各种乳腺癌的改善和进步。结果,它涵盖了临床研究中的广泛的生化治疗靶标。在当前研究中评估了几种植物蛋白L.(大蒜)的几种植物化学成分(有机硫化合物和类黄酮)的能力和结合能力。这项研究中研究的化学物质与3ERT分子具有显着关联。yriin与3ERT(-4.8 kcal/mol)具有最好的脂溶性化合物接触,而S-酰胺级别的半胱氨酸具有与3ERT(-4.6 kcal/mol)的最佳水溶性化合物相互作用。在测试的所有类黄酮中,黄酮植物化合物Kaempferol具有最大结合能(-8.0 kcal/mol)。已经发现类黄酮类似物对蛋白3ert的亲和力比所检查的有机硫化合物具有更高的亲和力,从而导致广泛的体外研究。