1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China 2 University of Chinese Academy of Sciences, Beijing 100190, China 3 Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada 4 School of Science, China University of Geosciences (Beijing), Beijing 100083,中国10
作者 C Liang · 2021 · 被引用 18 次 — 在本研究中,我们从大豆防御叶挥发物中鉴定出月桂酸 (LA)。LA 抑制了大豆疫霉菌(大豆病原体)的生长...
大豆在全球种植,用于油和蛋白质来源,作为生物燃料的食物,饲料和工业原料。在过去的世纪中,大豆产量的稳定增加主要归因于遗传介导,包括杂交,诱变和转基因。但是,使用转基因技术的遗传资源限制和复杂的社会问题阻碍了大豆改善,以满足全球对大豆产品需求的快速增加。基因组学和特异性核酸酶(SSNS)基因组编辑技术的新方法已扩大了其种质中大豆遗传变异的扩展,并有可能精确地改良基因,以控制精英素养中重要的农学特征。ZFN,Talens和CRISPR/CAS9已在大豆改进基因组中的靶向缺失,添加,替代品和校正中进行了调整。参考基因组组装和基因组资源的可用性提高了使用当前基因组编辑技术及其新发展的可行性。本综述总结了大豆改进和未来方向的基因组编辑状态。
摘要:蛋白质和糖含量在大豆中是重要的种子质量特征,因为它们可以提高大豆食品和饲料产品的价值和可持续性。因此,通过通过标记辅助选择来加速育种过程,鉴定大豆种子蛋白和糖含量的定量性状基因座(QTL)可以使植物育种者和大豆市场受益。在这项研究中,从R08-3221(高蛋白质和低蔗糖)和R07-2000(高蔗糖和低蛋白质)之间的十字架开发了重组近交系(RIL)。蛋白质含量的表型数据取自F2:4和F2:5代。DA7250 NIR分析仪和HPLC仪器用于分析总种子蛋白和蔗糖含量。基因型数据是使用Soysnp6k芯片分析生成的。在这项研究中总共确定了四个QTL。蛋白质含量的两个QTL位于11和20染色体上,两个与蔗糖含量相关的QTL位于染色体14和。11,后者与检测到的蛋白质QTL共定位,解释了研究人群中大豆种子中蛋白质和蔗糖含量的10%的表型变异。大豆育种计划可以使用结果来提高大豆种子质量。
摘要:种子糖成分,主要包括果糖,葡萄糖,蔗糖,raf鼻和stachyose,是大豆[甘氨酸Max(L.)Merr。]种子质量。但是,对大豆糖成分的研究是有限的。为了更好地了解大豆种子中糖成分的遗传结构,我们使用了323个大豆种质添加剂的种群进行了全基因组关联研究(GWAS),这些研究在三种不同的环境下进行了生长和评估。在GWAS中选择并使用了总计31,245个单核苷酸多态性(SNP)≥5%(MAFS)≥5%,缺少数据≤10%。与单个糖相关的分析72定量性状基因座(QTL),与总糖相关的14个。在六个染色体的铅SNP的100 kb旋转区域内的十个候选基因与糖含量显着相关。根据GO和KEGG分类,大豆中的糖代谢涉及八个基因,并在拟南芥中显示出相似的功能。另外两个位于与糖相关的已知QTL区域中,可能在大豆的糖代谢中发挥作用。这项研究促进了我们对大豆糖组成的遗传基础的理解,并促进了控制这种特征的基因的鉴定。认同的候选基因将有助于改善大豆中的种子糖成分。
与7 CFR 340.4一致,Aphis审查了您的修改大豆,以确定它是否受7 CFR第340部分中的规定约束。具体来说,Aphis审查了改良的大豆,以确定是否有合理的途径,相对于适当的大豆比较器构成的植物有害生物风险,大豆构成了增加的植物害虫风险。基于您提供的信息,公共可用的资源以及Aphis对大豆的熟悉以及对作用的特质,表型和作用机理的了解,Aphis考虑了(1)非修饰大豆及其性兼容的亲戚的(1)生物学; (2)修饰的特征和行动机理; and (3) the effect of the trait and mechanism-of-action on the (a) distribution, density, or development of the plant and its sexually compatible relatives, (b) production, creation, or enhancement of a plant pest or a reservoir for a plant pest, (c) harm to non-target organisms beneficial to agriculture, and (d) weedy impacts of the plant.Aphis并未确定任何合理的途径,相对于比较大豆植物,您的改良大豆会构成植物有害生物的风险增加。阿菲斯(Aphis)确定您的大豆不太可能与其比较器相比,植物有害生物风险增加。一旦阿菲斯(Aphis)确定植物产物不太可能与其比较者相对于其比较器提高植物害虫的风险,因此,不是植物害虫或需要调节的植物,因为它能够引入或传播植物害虫,Aphis无权在7 CFR Part 340中进行调节。因此,您的大豆不受第7 CFR第340部分规定的规定。阿菲斯(Aphis)的确定,这种修饰的植物不受法规的约束,延伸到与其他非修饰工厂或其他未经修饰的工厂衍生的修饰工厂的任何后代,这些植物或其他也不遵守7 CFR Part 340中的法规。请注意,Aphis的决定适用于使用信函中所述的基因工程开发的大豆。如果您在任何时候都意识到可能影响我们对您修改的大豆审查的任何信息,例如,包括显示特征,表型或行动机理的新信息与信函中所述的特征,表型或机制不同,则必须与Aphis联系,您必须与Aphis联系以在rsrrequests@usda.gov上进行进一步审查植物。请注意,您的植物产品虽然不受7 CFR第340部分的监管,但可能受到Aphis植物保护和隔离(PPQ)许可证和/或隔离要求的约束。有关更多信息,您可以通过877-770-5990与PPQ一般号码联系以获取此类查询。您的植物产品也可能受美国环境保护等其他监管机构的约束
“根据最新的大豆行业数据,大豆生产创造了 102,000 个就业岗位,工资收入超过 46 亿美元,总经济影响达 857 亿美元。这还不包括二级大豆市场和支持行业——生物燃料生产、谷物升降机、压榨设施、饲料厂、港口、铁路、炼油、驳船等——这些行业使大豆在全国范围内创造了 223,000 个全职就业岗位,收入达到 1240 亿美元,并且还在不断增长。Feeding the Economy 的报告不仅限于大豆,还展示了美国农业在总体上产生的更大影响。它表明,农业不仅为国内和全球提供粮食、饲料、燃料和纤维,而且也是美国经济的重要贡献者。而且,美国农业提供的粮食安全提供了经济安全。”
与7 CFR 340.4一致,Aphis审查了您的修改大豆,以确定它是否受7 CFR第340部分中的规定约束。具体来说,Aphis审查了改良的大豆,以确定是否有合理的途径,相对于适当的大豆比较器构成的植物有害生物风险,大豆构成了增加的植物害虫风险。基于您提供的信息,公共可用的资源以及Aphis对大豆的熟悉以及对作用的特质,表型和作用机理的了解,Aphis考虑了(1)非修饰大豆及其性兼容的亲戚的(1)生物学; (2)修饰的特征和行动机理; and (3) the effect of the trait and mechanism-of-action on the (a) distribution, density, or development of the plant and its sexually compatible relatives, (b) production, creation, or enhancement of a plant pest or a reservoir for a plant pest, (c) harm to non-target organisms beneficial to agriculture, and (d) weedy impacts of the plant.Aphis并未确定任何合理的途径,相对于比较大豆植物,您的改良大豆会构成植物有害生物的风险增加。阿菲斯(Aphis)确定您的大豆不太可能与其比较器相比,植物有害生物风险增加。一旦阿菲斯(Aphis)确定植物产物不太可能与其比较者相对于其比较器提高植物害虫的风险,因此,不是植物害虫或需要调节的植物,因为它能够引入或传播植物害虫,Aphis无权在7 CFR Part 340中进行调节。因此,您的大豆不受第7 CFR第340部分规定的规定。阿菲斯(Aphis)的确定,这种修饰的植物不受法规的约束,延伸到与其他非修饰工厂或其他未经修饰的工厂衍生的修饰工厂的任何后代,这些植物或其他也不遵守7 CFR Part 340中的法规。请注意,Aphis的决定适用于使用信函中所述的基因工程开发的大豆。如果您在任何时候都意识到可能影响我们对您修改的大豆审查的任何信息,例如,包括显示特征,表型或行动机理的新信息与信函中所述的特征,表型或机制不同,则必须与Aphis联系,您必须与Aphis联系以在rsrrequests@usda.gov上进行进一步审查植物。请注意,您的植物产品虽然不受7 CFR第340部分的监管,但可能受到Aphis植物保护和隔离(PPQ)许可证和/或隔离要求的约束。有关更多信息,您可以通过877-770-5990与PPQ一般号码联系以获取此类查询。您的植物产品也可能受美国环境保护等其他监管机构的约束
目标1:为大豆开发有效的无PAM无PAM CAS9和主要的编辑平台。这是一个基因编辑工具开发目标,它基于我们先前开发的CRISPR-CAS9基因编辑平台。为大豆建造主要的编辑系统。基于SPCAS9 Nickase的两个不同变体和M-MLV的逆转录酶,已经为大豆毛的根和稳定的转化和基因组编辑制作了三个主要的编辑系统。分别使用命名为PE1,PE2和PE3的三个系统,以制造针对编码CDPK47,CDPK48,CDPK49和CDPK50的大豆基因的主要编辑构建体。PE1和PE2系统,以确定哪种最适合于创建精确的遗传变化,以改善大豆的性状。不幸的是,这两个系统无效地在毛状根中的四个CDPK基因中创建突变。因此,我们决定使用PE2系统测试其他基因FAD2和EPSP,并且再次没有发现靶基因已修改的证据。第三个Prime编辑版本,名为PE3,还测试了在毛状根部编辑FAD2和EPSP基因的能力,这也没有成功。PE1,PE2和PE3 PRIME编辑构建体在大豆中似乎不起作用,因此我们正在采用替代方法来修改向量,以使用不同的策略来生成Prime编辑指南RNA。这些结构将在下一个报告期间进行测试。总而言之,使用在其他工厂中使用的策略,在大豆中的主要编辑应用并不能有效。1。我们继续努力确定将在大豆中有效的主要编辑策略。目标2:应用基础编辑和主要编辑来修改影响大豆对干旱反应的基因。我们设计了两种不同的CRISPR-Cas9构建体来敲除CDPK基因的功能,这些功能被预测会影响大豆对干旱的反应。基于CRISPR-CAS9的基因敲除大豆CDPK家族基因(CDPK47、48、49和50)的两个CRISPR构建体(NK44和NK46)已建立,以敲除CDPK基因的两种组合。a。 NK44:PATEC-INCAS9-GCDPK49-50(靶向CDPK49和CDPK50)b。 NK46:PATEC-INCAS9-GCDPK47-50(靶向CDPK47,CDPK48,CDPK49和CDPK50)对这两种构建体进行了大豆转化,并为转染料的存在而基因型进行了基因型。我们为NK44构建体获得了四个转基因阳性植物。我们总共获得了NK46构建体的七个转基因阳性植物。种子,我们将这些种子称为T1代。至少为每条线发芽了至少24个T1幼苗,我们进行了PCR首先确定NK44或NK46构建体是遗传的,我们