2024 年 IBB 世界锦标赛来自澳大利亚的 16 岁学生 Samuel Richards 是 2024 年国际脑力大赛世界冠军。第二名是来自加拿大的 Lisa Wei,第三名是来自中国的 Jerry (Siqi) Pan,两人也是 16 岁。IBB 世界冠军将获得 3,000 美元的奖金、个性化奖牌和奖牌。第二名和第三名也将分别获得奖牌和 2,000 美元和 1,000 美元的奖金。前五名获胜者将有机会参加将于 2025 年 7 月在加拿大多伦多阿尔茨海默病国际论坛 (AAIC) 举办的第二届 IBB NextGen 活动。与 Samuel、Lisa 和 Jerry 一起参赛的还有来自美国的 Harini Venkatesh 和来自澳门的 Chi Lok Chen。 “我们的 Brain Bee 冠军非常出色,鼓舞人心”,FENS 执行董事、IBB 董事会副主席兼世界锦标赛主席 Tasia Asakawa 说道。“很高兴在维也纳举办首届 IBB NextGen 活动,并结识 2023 年的五大获胜者。今年的冠军可以期待明年同样精彩的体验。” 10 月 5 日,五位冠军在虚拟颁奖典礼上由他们各自的 2023 年前辈宣布,他们参加了今年 6 月在奥地利维也纳 FENS 论坛举行的首届 IBB NextGen。同时宣布了 2024 年 IBB 神经解剖学/组织学奖的获奖者。来自澳大利亚的 Samuel Richards 获得了第二项荣誉,他在比赛的神经解剖学和神经组织学部分均获得最高分。奖金包括 100 美元和一本关于 1906 年诺贝尔奖获得者 Santiago Ramon y Cajal 作品的书。 2024 年世界锦标赛与神经科学学会 (SfN) 在伊利诺伊州芝加哥举办的年度会议“神经科学 2024”同时举行,获奖者也在 10 月 5 日的“脑意识运动”活动中宣布。IBB 是全球首屈一指的青少年神经科学竞赛。世界锦标赛将来自世界各地的学生聚集在一起,带来激动人心的竞赛和教育体验。9 月 27 日至 10 月 5 日举行的虚拟 2024 年赛事吸引了来自世界各地的 37 名全国脑科学冠军,创下了纪录。每位参赛者之前都曾赢得过各自国家最高级别的脑科学竞赛,从而获得参加世界锦标赛的资格。
MEDICAL GRAND ROUNDS 2019-2020 September 2 Labour Day - No Rounds September 9 No Rounds ̊ September 16 CLINICAL ETHICS ROUNDS ETHICAL ISSUES REGARDING PEG FEEDING TUBES FOR DEMENTIA PATIENTS: A CASE REVIEW Mr. Kevin Hayes Clinical Ethicist Albert Cohen, MD Associate Professor of Medicine, McGill University Chief, Division of Gastroenterology, Jewish General Hospital & Me Andréane Baribeau Attorney- CIUSSS西部蒙特利尔中央教育目标:1。讨论干预的风险和好处2。分析患者的替代决策者在喂养管的3中的作用。法律组件的审查联系人:凯文·海斯(Kevin Hayes),临床伦理办公室,分机。23625。̊9月23日,病理学的未来:事实,趋势和梦想,医学博士病理学和肿瘤学教授,麦吉尔大学病理学局长,麦吉尔大学健康中心病理学部(MUHC)现场总监,犹太人遗产医院(JGH)主要研究所的分子遗传学分子遗传学部门,戴维斯夫人的研究所。更熟悉病理的最新和当前的演变,尤其是在分子病理和上下文基因组学领域2。更好地了解病理学中的当前和即将来临的破坏性技术3。对医学诊断的中期和长期方向有一些想法,包括联系人:莫琳·贝斯利夫人,病理科,电话。514-340-8274。9月30日Rosh Hashanah *10月7日,第五届年度医学部临床研究研讨会I.AN ASSAY TO MEASURE CYP3A4 AND CYP1A2 ENZYME ACTIVITY IN HUMANS: POTENTIAL RELEVANCE IN LUNG CANCER Thomas Jagoe, MD, PhD, FRCP Associate Professor of Medicine, McGill University Director, McGill Cancer Nutrition Rehabilitation (CNR) Program Co-Director of Peter Brojde Lung Cancer Centre (PBLCC) Staff, Division of Pulmonary Medicine Jewish General Hospital Educational Objectives:
2024 年 4 月 15 日 — 第 1 页。干得好。我们的。大红一号。士兵。胜利之年。2024 国际。古德。美国陆军。成立于 1917 年。谁参加了。2024 国际。
愤怒的小鸟人工智能竞赛 (AIBIRDS) 的目标是构建能够比最优秀的人类玩家更好地玩新版愤怒的小鸟关卡的智能代理。该竞赛由本报告的作者于 2012 年发起,并与一些主要的人工智能会议同期举行,如 2013 年和 2015 年的国际人工智能联合会议以及 2014 年的欧洲人工智能会议。愤怒的小鸟是一款流行的基于物理的益智游戏,由 Rovio 公司开发,要求玩家使用弹弓将小鸟射向受物理结构保护的绿色小猪(见图 1)。玩家可以采取的操作很简单,即小鸟从弹弓上释放的点 (x, y) 以及释放后激活小鸟特殊能力的时间 (t)。一旦所有小猪都被消灭,关卡就算通过;大多数关卡最多需要五只小鸟即可通过。不同的鸟有不同的行为和特殊能力,虽然玩家知道鸟在弹弓上出现的顺序,但玩家无法操纵这个顺序。虽然这听起来很简单,但对于人工智能来说,这是一个非常困难的问题,因为动作空间是连续的,如果不模拟每个动作,就无法知道每个动作的确切结果。内置的物理模拟器可以确定性地
co1:了解治理方程和基本流动特征背后的基本物理,以解决流场问题。二氧化碳:了解不同流的流动行为,并通过叠加来确定作用在气缸上的力。CO3:应用共形和kutta joukowski变换,以将作用在气缸上的力转换为机翼。CO4:应用薄机翼和有限的机翼理论来预测作用在飞机上的力和力矩。二氧化碳:应用PrandTL的举升线方程,以在简单的机翼上计算升力和力矩系数。二氧化碳:了解边界层流的基本概念。
● AI4SIDS:面向小岛屿发展中国家的人工智能驱动气候适应平台。团队负责人:Letetia Addison,特立尼达和多巴哥(获奖) ● Chameleon AI:人工智能驱动的平台,旨在改变马拉维小农户的灌溉方式。团队负责人:Alinafe Kaliwo,马拉维。● 气候智能灌溉器:智能水-食物-能源食物关系效率灌溉。团队负责人:Edmond Ng'walago,坦桑尼亚。● ACBA Energy 的 EmTrack:用于排放跟踪和碳排放量化的人工智能应用。团队负责人:Nair de Sousa,安哥拉。● RAICE:尼泊尔可持续水稻种植的人工智能驱动精准灌溉。团队负责人:Asbina Baral,尼泊尔。
血浆病毒血症。CRISPR 和 LASER ART 协同作用将有效靶向储存位点并完全切断宿主的 HIV-1 前病毒 DNA。此外,CRISPR-Cas9 将用于从宿主基因组中切除 HIV-1 前病毒 DNA,使用 AAV9 进行递送并消除潜伏的 HIV-1 前病毒。小鼠将通过移植人类 CD34+ HSC 进行人源化并通过流式细胞术确认。研究中将使用四组 HIV 感染大鼠:CRISPR-Cas9 治疗组、LASER ART 治疗组、联合治疗组和对照组。联合疗法在啮齿动物试验中已证明在去除潜伏感染性储存器方面取得了一定程度的成功。通过体内切除 HIV-1 亚基因组 DNA 片段来去除整合的前病毒 DNA;接受联合疗法治疗的大鼠没有潜伏的 HIV-1 储存器。相反,仅用 LASER ART 或 CRISPR-Cas9 治疗的啮齿动物组没有消除 HIV-1 的证据。这一证据为进一步研究和进行非人类灵长类动物试验以开发治疗方法的可能性奠定了基础。使用 BLAST 通过宏基因组分析研究海星消耗病的病因 Samantha McGuinness,BSc NEUR [1],Kathryn Austin,BSc MFB [2],Emily Gibbons,BSc MBG [3] [1] 圭尔夫大学心理学系,加拿大安大略省圭尔夫 N1G 2W1 [2] 圭尔夫大学综合生物学系,加拿大安大略省圭尔夫 N1G 2W1 [3] 圭尔夫大学分子和细胞生物学系,加拿大安大略省圭尔夫 N1G 2W1 海星消耗病 (SSW) 是一种影响全球小行星的疾病。最严重的是,2013 年,东北太平洋超过 20 种物种大规模死亡。 SSW 的病因不明,但有 3 种理论:病毒感染、微生物作用于有机物 (OM) 导致动物与水界面的 O 2 耗尽,或两者结合形成一种综合症。本研究将通过确定来自含有 OM 诱发的萎缩性 Pisaster ochraceus 的水箱的水是否会在采用不同 OM 处理的水箱中诱发 P. ochraceus 的 SSW,来调查 SSW 是否是一种综合症。受影响水箱的水将通过管道输送到另外两个水箱中,这两个水箱中都有未感染的 P. ochraceus。这三个水箱被分为一个水箱中有受 OM 诱发的受影响 P. ochraceus,一个水箱中有灭菌 OM,一个水箱中没有 OM。将测量 SSW 的发病情况,并使用生物信息学技术 BLAST 在组织和水柱中检测先前确定的微生物的存在和组成。预计没有 OM 的水箱中 SSW 的发生率会较低,因为这种条件下病毒可以存活,而微生物则无法存活。该研究可以评估 SSW 是否是病毒病原体和微生物作用相互作用的结果。在评估每个水箱的致病性和微生物生长水平后,在未来研究中,可以进一步分析显示可见星病数量最多的水箱。由于 SSW 的病因仍然未知,评估病毒和微生物的关系和重要性对于找到可能的解决方案至关重要。尽管证据支持许多潜在的致病因素,但很少有研究研究 SSW 中病毒和微生物之间可能存在的相互作用。利用 CRISPR-Cas9 系统和农杆菌进行外壳蛋白研究,帮助作物产生双生病毒抗性 Kajisha Vijayakumar,食品学学士 [1],Iman Andrea Niyokindi shima,公共卫生学学士 [2] [1] 圭尔夫大学食品科学系,加拿大安大略省圭尔夫 N1G 2W1 [2] 圭尔夫大学物理系,加拿大安大略省圭尔夫 N1G 2W1 双生病毒已经给印度豆类和非洲木薯产业造成了数百万美元的损失,并引发全球粮食短缺。双生病毒是具有小基因组和少量编码蛋白质的 DNA 病毒。近年来,人们研究了成簇的规律间隔短回文重复序列 (CRISPR),试图开发出作物对这些病毒的抗性。Cas9(一种位点特异性 DNA 内切酶)和合成的单向导 RNA (sgRNA) 构成了 CRISPR-Cas9 机制。Cas9 通过 sgRNA 定向到其基因组靶区域,并通过两个核酸酶域切割噬菌体。Cas9-切口酶提高了切割准确性并允许更大的缺失。根据文献,CRISPR 可用于删除植物易感性 (S) 基因,以产生作物的抗病性。然而,尚未发现双生病毒的特定 S 基因。一个建议的解决方案是针对外壳蛋白 AV1/V1,这是双生病毒的唯一结构蛋白。这些蛋白质对其功能至关重要,因为它们负责病毒 DNA 往返于细胞核,并与 ssDNA 结合以实现有效复制。我们假设 CRISPR-Cas9 可以与 Cas9-nickases(以提高功效)和农杆菌一起递送到受影响的作物中。农杆菌是一种在植物细胞中产生肿瘤的病原体,但由于其具有转移 DNA 的能力,也用于转基因。农杆菌插入 T-DNA 的预期效果是外壳蛋白发生突变,这将损害外壳蛋白并使其失活。如果没有这种结构蛋白,病毒感染就不会有效,使双生病毒变得毫无用处。这将使农业受益,防止数十亿作物受到感染,从而提高生产力并减少全球粮食危机。很少有研究分析过 SSW 中病毒和微生物之间可能存在的相互作用。利用 CRISPR-Cas9 系统和农杆菌改造外壳蛋白,帮助作物产生双生病毒抗性 Kajisha Vijayakumar,食品学学士 [1],Iman Andrea Niyokindi shima,公共卫生学学士 [2] [1] 圭尔夫大学食品科学系,加拿大安大略省圭尔夫 N1G 2W1 [2] 圭尔夫大学物理系,加拿大安大略省圭尔夫 N1G 2W1 双生病毒给印度豆类和非洲木薯产业造成了数百万美元的损失,并引发全球粮食短缺。双生病毒是一种基因组较小、编码蛋白质较少的 DNA 病毒。近年来,人们研究了成簇的规律间隔的短回文重复序列 (CRISPR),试图让作物产生对这些病毒的抗性。 Cas9(位点特异性 DNA 内切酶)和合成的单向导 RNA(sgRNA)构成 CRISPR-Cas9 机制。Cas9 通过 sgRNA 定向到其基因组靶区域,并通过两个核酸酶域切割噬菌体。Cas9-切口酶可提高切割准确性并允许更大的缺失。根据文献,CRISPR 可用于删除植物易感性 (S) 基因,从而在作物中产生抗病性。然而,尚未发现双生病毒的特定 S 基因。建议的解决方案是针对外壳蛋白 AV1/V1,这是双生病毒的唯一结构蛋白。这些蛋白质对其功能至关重要,因为它们负责病毒 DNA 往返于细胞核,并结合 ssDNA 以实现有效复制。我们假设 CRISPR-Cas9 可以与 Cas9-切口酶(以提高功效)和农杆菌一起递送到受影响的作物中。农杆菌是一种在植物细胞中产生肿瘤的病原体,但由于其具有转移 DNA 的能力,因此也可用于转基因。农杆菌插入 T-DNA 的预期效果是外壳蛋白发生突变,这将破坏外壳蛋白并使其失活。如果没有这种结构蛋白,病毒感染就不会有效,从而使双生病毒变得毫无用处。这将使农业受益,防止数十亿农作物受到感染,从而提高生产力并减少全球粮食危机。很少有研究分析过 SSW 中病毒和微生物之间可能存在的相互作用。利用 CRISPR-Cas9 系统和农杆菌改造外壳蛋白,帮助作物产生双生病毒抗性 Kajisha Vijayakumar,食品学学士 [1],Iman Andrea Niyokindi shima,公共卫生学学士 [2] [1] 圭尔夫大学食品科学系,加拿大安大略省圭尔夫 N1G 2W1 [2] 圭尔夫大学物理系,加拿大安大略省圭尔夫 N1G 2W1 双生病毒给印度豆类和非洲木薯产业造成了数百万美元的损失,并引发全球粮食短缺。双生病毒是一种基因组较小、编码蛋白质较少的 DNA 病毒。近年来,人们研究了成簇的规律间隔的短回文重复序列 (CRISPR),试图让作物产生对这些病毒的抗性。 Cas9(位点特异性 DNA 内切酶)和合成的单向导 RNA(sgRNA)构成 CRISPR-Cas9 机制。Cas9 通过 sgRNA 定向到其基因组靶区域,并通过两个核酸酶域切割噬菌体。Cas9-切口酶可提高切割准确性并允许更大的缺失。根据文献,CRISPR 可用于删除植物易感性 (S) 基因,从而在作物中产生抗病性。然而,尚未发现双生病毒的特定 S 基因。建议的解决方案是针对外壳蛋白 AV1/V1,这是双生病毒的唯一结构蛋白。这些蛋白质对其功能至关重要,因为它们负责病毒 DNA 往返于细胞核,并结合 ssDNA 以实现有效复制。我们假设 CRISPR-Cas9 可以与 Cas9-切口酶(以提高功效)和农杆菌一起递送到受影响的作物中。农杆菌是一种在植物细胞中产生肿瘤的病原体,但由于其具有转移 DNA 的能力,因此也可用于转基因。农杆菌插入 T-DNA 的预期效果是外壳蛋白发生突变,这将破坏外壳蛋白并使其失活。如果没有这种结构蛋白,病毒感染就不会有效,从而使双生病毒变得毫无用处。这将使农业受益,防止数十亿农作物受到感染,从而提高生产力并减少全球粮食危机。成簇的规律间隔短回文重复序列 (CRISPR) 已被研究,以尝试开发作物对这些病毒的抗性。Cas9(位点特异性 DNA 内切酶)和合成的单向导 RNA (sgRNA) 构成 CRISPR-Cas9 机制。Cas9 通过 sgRNA 定向到其基因组靶区域,并通过两个核酸酶域切割噬菌体。Cas9-切口酶提高了切割准确性并允许更大的缺失。根据文献,CRISPR 可用于删除植物易感性 (S) 基因,以产生作物的抗病性。然而,尚未发现双生病毒的特定 S 基因。建议的解决方案是针对外壳蛋白 AV1/V1,这是双生病毒的唯一结构蛋白。这些蛋白质对其功能至关重要,因为它们负责病毒 DNA 往返于细胞核,并结合 ssDNA 以进行有效复制。我们假设 CRISPR-Cas9 可以与 Cas9-nickases(以提高功效)和农杆菌一起递送到受影响的作物中。农杆菌是一种在植物细胞中产生肿瘤的病原体,但由于其具有转移 DNA 的能力,也用于转基因。农杆菌插入 T-DNA 的预期效果是外壳蛋白发生突变,这将损害外壳蛋白并使其失活。如果没有这种结构蛋白,病毒感染就不会有效,使双生病毒变得毫无用处。这将使农业受益,防止数十亿作物受到感染,从而提高生产力并减少全球粮食危机。成簇的规律间隔短回文重复序列 (CRISPR) 已被研究,以尝试开发作物对这些病毒的抗性。Cas9(位点特异性 DNA 内切酶)和合成的单向导 RNA (sgRNA) 构成 CRISPR-Cas9 机制。Cas9 通过 sgRNA 定向到其基因组靶区域,并通过两个核酸酶域切割噬菌体。Cas9-切口酶提高了切割准确性并允许更大的缺失。根据文献,CRISPR 可用于删除植物易感性 (S) 基因,以产生作物的抗病性。然而,尚未发现双生病毒的特定 S 基因。建议的解决方案是针对外壳蛋白 AV1/V1,这是双生病毒的唯一结构蛋白。这些蛋白质对其功能至关重要,因为它们负责病毒 DNA 往返于细胞核,并结合 ssDNA 以进行有效复制。我们假设 CRISPR-Cas9 可以与 Cas9-nickases(以提高功效)和农杆菌一起递送到受影响的作物中。农杆菌是一种在植物细胞中产生肿瘤的病原体,但由于其具有转移 DNA 的能力,也用于转基因。农杆菌插入 T-DNA 的预期效果是外壳蛋白发生突变,这将损害外壳蛋白并使其失活。如果没有这种结构蛋白,病毒感染就不会有效,使双生病毒变得毫无用处。这将使农业受益,防止数十亿作物受到感染,从而提高生产力并减少全球粮食危机。病毒感染不会有效,使双生病毒变得毫无用处。这将使农业受益,防止数十亿农作物受到感染,从而提高生产力并减少全球粮食危机。病毒感染不会有效,使双生病毒变得毫无用处。这将使农业受益,防止数十亿农作物受到感染,从而提高生产力并减少全球粮食危机。