传统上,无障碍研究界将大部分精力集中在设计与单一类别的残疾相关的辅助技术和系统上。尽管这种方法为该领域带来了宝贵的进步和发展,但无障碍研究人员越来越一致地认为,专注于为单一残疾设计技术过于简化了残疾问题,因为这种方法可能无法充分解决大量具有复杂需求的用户在现实世界中的经历。尽管对患有多重、严重或复杂残疾的用户进行研究存在挑战,但就未来工作而言,无障碍研究界必须采用更具包容性的方法,让具有多重残疾生活经历的用户直接参与和塑造辅助系统和无障碍技术的设计。因此,我们提议举办第二届无障碍研究和多重残疾或复杂需求用户国际研讨会。研讨会将作为一个论坛,让参与者分享他们的观点,这些观点与设计考虑到多重残疾用户的多维需求的无障碍系统方面的挑战和机遇有关。该研讨会旨在挑战无障碍领域的现有范式、分享最新成果并促进未来合作。
油菜籽不仅可以提供大量具有高营养价值的食用油,还可以用作许多行业生产生物燃料的原料。因此,为了满足人类和工业的需求,迫切需要进行基因改变。尽管杂交和诱变等传统育种技术长期以来仍然是培育油菜良种的主要方法,但成簇的规律间隔短回文重复序列 (CRISPR) 正在成为最有价值的基因编辑技术之一,它可以实现精确的基因组工程,并为植物功能基因组学的研究开辟新的途径。虽然 CRISPR 已用于许多其他作物的遗传改良,但它有望成为油菜籽油改良的基因组编辑和分子设计的有效工具。这篇小型评论将讨论和总结过去和正在进行的使用 CRISPR 技术在油菜籽油改良和脂肪酸组成方面的研究和开发。此外,本文还将简要总结阻碍该工具效率的因素以及如何消除这些因素。本文还将考虑改进 CRISPR 技术以在油菜中获得更好的结果。这篇小综述将为使用 CRISPR 技术进行油菜油改良研究和遗传改良的研究人员打开新的窗口。
摘要 - Holographic多输入多输出(HMIMO)通信系统利用了具有空间约束的大型MIMO阵列,其中包含大量具有子波长度间距的天线,并已成为第六代网络(6G)网络的有前途的候选技术。在本文中,我们考虑了在随机电磁模拟物通道模型的傅立叶平面波序列表示下的多用户HMIMO通信系统的下行链路,并做出了两个重要的贡献。首先,我们在基站(BS)的最大比率传输(MRT)预编码下,在最大比率传输(MRT)下呈现封闭形式的表达。派生的表达式明确显示了BS和每个用户的Hmimo表面的侧面长度的影响,以及在这些表面中部署的天线对用户速率的影响。第二,我们就BS和每个用户的空间约束的Hmimo表面上排列的天线数量提出了能量效率(EE)最大化问题。对此问题的结果隐式解决方案显示为全球最佳。数值结果对不同操作制度中多用户HMIMO系统的EE性能产生了有用的见解。索引术语 - 多用户全息MIMO通信,渠道建模,可实现的速率,能量效率。
空中交通管制员用于观察大量具有不一致用户界面的不同系统。在本文中,我们介绍了一种客户端服务器架构的设计,以将这些系统集成为一个提供同质图形用户界面的系统。该框架的主要目标是适应灵活性、快速原型设计能力,能够在项目早期阶段让管制员参与进来,并简单应用用户界面设计原则来优化态势感知。除其他外,我们在本文中总结的这些原则包括使用颜色、动画和形状。与使用传统的桌面应用程序开发工具包不同,所展示系统的图形用户界面基于 QtQuick 构建,这是一个通过声明性语言创建任意用户体验的库,无需进行持续编译。在本文中,我们详细讨论了该技术的优点和缺点,并说明了我们使用它的动机。我们解释了系统的设计,并结合了额外的实施细节,并展示了使用它创建的几个原型,以展示其可能性。这些原型是根据项目适应性工作和来自世界不同地点的控制器的可用性印象进行评估的,所提出的系统将在不久的将来安装。所提出的框架提供了较低的适应时间和灵活的应用用户界面设计隐喻的能力,这使其非常适合预期用途。在这方面,QtQuick 被证明是该系统的坚实基础。
在肺动脉高压(PAH)的基因组学基因组学上取得了长足的进步,因为第六次世界上的肺动脉高压座研讨会,在几种新型基因中鉴定了稀有变体,以及赋予PAH风险中等的常见变体。基因和专家小组的变体策划现在为了解要测试哪些基因以及如何解释临床实践中的变体提供了一个强大的框架。我们建议将基因检测提供给有症状的PAH患者的特定亚组,以及患有某些类型的3组肺动脉高压(pH)的儿童。对无症状家庭成员的测试以及在生殖决策中使用遗传学需要参与遗传学专家。现在存在大量具有生物素质的PAH患者,并且已经开始扩展到非组1 pH。但是,这些同类人群主要是欧洲血统。更大的多样性对于表征导致pH风险和治疗反应的全基因组变异的全部程度至关重要。还合并了其他类型的OMIC数据。此外,为了推进基因和途径特异性护理和靶向疗法,基因特异性注册机构对于支持患者及其家人以及为基于遗传知情的临床试验奠定基础至关重要。这将需要患者/家庭,临床医生和研究人员之间的国际宣传和合作。最终,对患者衍生的生物测量,临床和杂音信息以及分析方法的协调将推进这一领域。
空中交通管制员用于观察大量具有不一致用户界面的不同系统。在本文中,我们介绍了一种客户端服务器架构的设计,以将这些系统集成为一个提供同质图形用户界面的系统。该框架的主要目标是适应灵活性、快速原型设计能力,能够在项目早期阶段让管制员参与进来,并简单应用用户界面设计原则来优化态势感知。除其他外,我们在本文中总结的这些原则包括使用颜色、动画和形状。与使用传统的桌面应用程序开发工具包不同,所呈现系统的图形用户界面基于 QtQuick 构建,QtQuick 是一个通过声明性语言创建任意用户体验的库,无需不断编译。在本文中,我们详细讨论了该技术的优点和缺点,并说明了我们使用它的动机。我们解释了系统的设计,并结合了其他实施细节,并展示了使用它创建的几个原型,以展示其可能性。这些原型是根据项目适应性工作和来自世界不同地点的控制器的可用性印象进行评估的,这些地点将在不久的将来安装所提出的系统。所提出的框架提供了较低的适应时间和灵活的应用用户界面设计隐喻的能力,这使其非常适合预期用途。在这方面,QtQuick 被证明是该系统的坚实基础。
广义相对论允许时空扭曲。这一关键特性广泛地揭示了大量具有奇特性质的相当有趣的几何结构。其中,黑洞是一类极其有趣且无处不在的几何结构,最近已被事件视界望远镜实验 [ 1 , 2 ] 以及基于引力波的实验 [ 3 ] 直接探测到。从早期对黑洞的理论研究,特别是爱因斯坦和罗森在 [ 4 ] 中的研究,人们推测黑洞及其他地方可能存在一种连接到渐近区域的特殊几何结构。在 [ 5 ] 中,此类几何结构被称为“虫洞”。从那时起,此类几何结构就一直是科学和科幻小说灵感和想象力的源泉。具体来说,由于虫洞通过“喉部区域”连接到两个(或更多)渐近几何,它长期以来一直启发人们在宇宙中实现极快的旅行。然而,经过进一步的审查,我们可以区分出两种虫洞:一种是对于这种旅行来说不稳定的虫洞,或者需要一些奇异物质场的支持才能供人类穿越;另一种是可穿越的虫洞,虽然可以由标准物质场支持,但不提供两点之间的最短路径。尽管如此,这些几何形状将理论物理学中的基础概念(如因果关系、局部性、时间保护等)结合在一起,并帮助我们进一步完善它们。这是一个很好的参考点,可以参考
在 IV 族单硫族化物中,层状 GeSe 因其各向异性、1.3 eV 直接带隙、铁电性、高迁移率和出色的环境稳定性而备受关注。电子、光电子和光伏应用依赖于合成方法的开发,这些方法可以产生大量具有可控尺寸和厚度的晶体薄片。在这里,我们展示了在低热预算下,在不同基底上通过金催化剂通过气相-液相-固相工艺生长单晶 GeSe 纳米带。纳米带结晶为层状结构,带轴沿着范德华层的扶手椅方向。纳米带的形态由催化剂驱动的快速纵向生长决定,同时通过边缘特定结合到基面而进行横向扩展。这种组合生长机制能够实现温度控制的纳米带,其典型宽度高达 30 μm,长度超过 100 μm,同时保持厚度低于 50 nm。单个 GeSe 纳米带的纳米级阴极发光光谱表明,在室温下具有强烈的温度依赖性带边发射,其基本带隙和温度系数分别为 E g (0) = 1.29 eV 和 α = 3.0×10 -4 eV/K,证明了高质量 GeSe 和低浓度的非辐射复合中心,有望用于包括光发射器、光电探测器和太阳能电池在内的光电应用。
在当今时代,通过查看大量磁共振成像 (MRI) 图像来亲自发现脑肿瘤是一个既极其耗时又容易出错的过程。它可能会阻止患者接受适当的医疗治疗。同样,由于涉及大量图像数据集,完成这项工作可能需要大量时间。由于正常组织和构成脑肿瘤的细胞之间存在惊人的视觉相似性,因此分割肿瘤区域的过程可能是一项艰巨的任务。因此,拥有一个极其准确的自动肿瘤检测系统是绝对必要的。在本文中,我们使用卷积神经网络 (CNN)、经典分类器和深度学习 (DL) 实现了一个在 2D MRI 扫描中自动检测和分割脑肿瘤的系统。为了充分训练算法,我们收集了大量具有各种肿瘤大小、位置、形式和图像强度的 MRI 图片。这项研究已使用支持向量机 (SVM) 分类器和几种不同的激活方法(softmax、RMSProp、sigmoid)进行了双重检查。由于“Python”是一种快速高效的编程语言,我们使用“TensorFlow”和“Keras”来开发我们提出的解决方案。在我们的工作过程中,CNN 能够达到 99.83% 的准确率,这优于迄今为止取得的结果。我们基于 CNN 的模型将帮助医疗专业人员在 MRI 扫描中准确检测脑肿瘤,这将显著提高患者的治疗率。
糖尿病神经病(DN)是糖尿病的长期并发症,影响了包括感觉和运动神经元在内的不同周围神经系统。高血糖是DN的主要原因,其症状,例如平衡或协调性的弱点,对感觉不敏感,肌肉无敏,肌肉的弱点以及肢体镇痛药中的麻木和疼痛,例如阿片类药物可以有效缓解神经病性疼痛,但没有有效的治疗。脂联素是一种抗糖尿病脂肪因子,具有胰岛素敏感和神经保护作用。在这个项目中,我们旨在确定对阿片类药物和脂联素受体双重作用的药物。在虚拟筛选的重新定位活动中,通过对接筛选了大量具有不同结构的化合物,这些化合物具有不同的adiporon-piperidine衍生品。最近开发了阿片类受体苯并派激动剂,最终成为脂联素受体的好配体,显示了与adiporon的一些2D和3D结构相似性。尤其是,我们已经确定了( +)-MML1017,它与Adipor1和Adipor2的相同结合域具有高亲和力。我们的Western印迹结果表明( +)-MML1017在神经元细胞系中通过ADIPOR1和ADIPOR2激活AMPK磷酸化。此外,( +)-MML1017的预处理可以改善在超糖糖菌条件下与运动神经元的细胞活力。( +)-MML1017还以浓度依赖性方式激活μ-阿片受体细胞。我们的研究确定了一种对阿片受体和脂联素的双重活性的新型化合物,该化合物可能具有镇痛作用和神经保护作用,以治疗糖尿病神经病。