必须充分利用它们的物理特性并成功实现器件,例如各种成功的 III-V 半导体器件 40,41 ——最终目标是外延和单晶生长。Sb2Te3(以及其他拓扑绝缘体,如 Bi2Te3 和 Bi2Se3)的外延膜已通过分子束外延工艺直接生长,29,30 该技术在批量生产中显示出其局限性。另一方面,化学气相沉积技术存在形态控制不佳的问题,我们专门研究了 MOCVD 在这方面的研究。 TI 生长中常用的衬底,例如 Si(100)、Si(111) 和 Al 2 O 3 (0001),与 Sb 2 Te 3 (以及一般的 TI) 存在明显的晶格失配,因此在存在旋转畴的情况下,会生长为取向性较差的多晶层 23,32 – 34 ,只有少数例外 42,43
B为VI族元素,例如Bi 2 Se 3 、Bi 2 Te 3 、Sb 2 Te 3 和In 2 Se 3 ,由于其独特的电子性质而受到越来越多的关注。 [2] 例如,半导体In 2 Se 3 表现出厚度相关的带隙(从块状晶体的1.3 eV到单层的2.8 eV)。 [3] 与无间隙石墨烯和过渡金属二硫属化合物相比,In 2 Se 3 的电子性质显示出明显的优势,后两者仅在单层中表现出相对较大的带隙(1.5–2.5 eV)。 [4] 当用作光学材料时,In 2 Se 3 表现出高吸收系数、宽范围响应度(从紫外线(325 nm)到短波长红外(1800 nm))和高灵敏度。 [5] 与其他对空气敏感的直接带隙二维材料(如黑磷(BP)[1c])不同,完整的 In 2 Se 3 薄片在空气中非常稳定。最近,基于单个 In 2 Se 3 纳米片的光电探测器具有高光敏性(10 5 AW − 1 )和快速、可逆和稳定的光响应特性。[5] In 2 Se 3 的优异性能优于许多其他二维材料(如石墨烯、BP 和 MoS 2 ),为大面积光电探测器提供了重要的基础。[6] 尽管如此,具有大晶畴的无缺陷 In 2 Se 3 薄片的可扩展生产仍然是其实际应用的障碍。微机械剥离是生产高质量薄 In 2 Se 3 纳米片的最著名方法。[5,7] 然而,它的剥离产率极低,仅适用于基础研究。 [8] 克服这一限制的潜在方案包括化学气相沉积、[2c] 液相剥离 [9] 和湿化学合成。[10] 然而,这些方法制备的 In 2 Se 3 薄片通常具有大量缺陷和较差的光电性能。[9,11] 例如,通过气相沉积获得的 In 2 Se 3 纳米片的光响应度(3.95 × 10 2 AW − 1)明显低于透明胶带剥离薄片(10 5 AW − 1)。[8] 从基本角度来看,In 2 Se 3 是一种由弱范德华力连接的层状材料,层间距离为 0.98 nm,比许多其他层状化合物(0.3–0.7 nm;图 1 a、b;图 S1,支持信息)大得多。因此,插入客体分子或离子,特别是在溶液中电流的驱动下,可以成为将二维晶体分层成单个薄片的合理策略。[12]
OmniCure ® AC8-HD 系列产品将空气冷却 UV LED 固化提升到新的水平。这些系统可提供出色的高光剂量,并采用专利技术设计,可在整个照射区域实现无与伦比的输出均匀性。这些装置提供三种标准固化宽度 - 6 英寸 (150 毫米)、9 英寸 (225 毫米) 和 12 英寸 (300 毫米),可以连接起来定制并实现无数固化尺寸,而不会影响均匀性。Excelitas Technologies 的专利工艺用于处理单个 UV LED 模块输出,不仅可以在整个固化区域实现出色的均匀性,而且还使客户能够定制输出并受益于更严格的过程控制。AC8-HD 系统可提供超过 15W/cm 2 的峰值辐照度,剂量是标准 AC8 系列产品的两倍,使这些系统成为需要高剂量应用的理想选择。凭借高 UV LED 输出,AC8-HD 系列可以支持更广泛的应用,并提高处理速度。 AC8150P-HD、AC8225P-HD 和 AC8300P-HD 具有 385nm、395nm 和 405nm 波长,还提供 RS485 功能,以实现更大的灵活性和易于集成。
©2016 Excelitas Canada Inc.Omnicure®是加拿大Excelitas Inc.的注册商标The Excelitas logo and design are registered trademarks of Excelitas Technologies Corp. All other trademarks are the property of their respective owners, and neither Excelitas Technologies Corp., its affiliates or subsidiaries, or any of their respective products, are endorsed or sponsored by or affiliated in any way whatsoever with those organizations whose trademarks and/or logos may be mentioned herein for reference目的。Excelitas Canada Inc.保留随时更改本文档的权利,恕不另行通知并违反编辑,绘画或印刷错误的责任。
1 阿尔托大学微纳米科学系,Micronova,Tietotie 3,02150,埃斯波,芬兰 2 联邦物理技术研究院,Bundesallee 100,38116 不伦瑞克,德国 3 MIKES,Tekniikantie 1,FI-02150,埃斯波,芬兰 电子邮件:novikov@aalto.fi,alexandre.satrapinski@mikes.fi 摘要 — 基于在 SiC 上生长的外延石墨烯膜的量子霍尔效应 (QHE) 器件已被制造和研究,以开发 QHE 电阻标准。霍尔器件中的石墨烯-金属接触面积已得到改进,并使用双金属化工艺制造。测试器件的初始载流子浓度为 (0.6 - 10)·10 11 cm -2,在相对较低的 (3 T) 磁场下表现出半整数量子霍尔效应。光化学门控方法的应用和样品的退火为将载流子密度调整到最佳值提供了一种方便的方法。在中等磁场强度 (≤ 7 T) 下对石墨烯和 GaAs 器件中的量子霍尔电阻 (QHR) 进行精密测量,结果显示相对一致性在 6 · 10 -9 范围内。索引术语 - 外延石墨烯、石墨烯制造、接触电阻、精密测量、量子霍尔效应。
德国汉诺威莱布尼茨大学摄影测量与地理信息研究所 jacobsen@ipi.uni-hannover.de 第一委员会,第一工作组 I/4 关键词:DHM、卫星图像、InSAR、分析 摘要:大面积覆盖高度模型主要基于光学和合成孔径雷达 (SAR) 空间图像。通过光学图像自动匹配确定的单个物体点的垂直精度在 1.0 地面采样距离 (GSD) 范围内,但这与高度模型的精度并不相同。除长波长 SAR 数据、P 波段和 L 波段外,所有高度模型最初都是数字表面模型 (DSM),而不是最常要求的数字地形模型 (DTM),其裸地高度必须通过过滤生成。此外,高度模型受插值的影响,从而降低了几何质量。分析了大面积覆盖高度模型的精度和特性,包括确定方法对细节的影响。此外,绝对精度还受地理参考质量的影响,地理参考质量部分基于直接传感器方向,部分基于地面控制点 (GCP) 或间接基于其他现有高度模型。对高度模型分辨率最重要的影响是 DHM 的点间距,但如果数据处理不当,细节也会丢失。所有高度模型在陡峭地形中的精度都较低,光学图像的匹配受物体对比度的影响,而 SAR 受重叠的影响。因此,高度模型中的空白通常会被其他数据填充,从而导致更多的异质性。1.简介
本文提出了新的实验和数值方法,以表征环氧聚合物底物的转移过量。我们研究了陶瓷面板上的多芯片模块以及封装为模具阵列包装(MAP)的印刷电路板上。实验表明,在过度过度过程中的聚合物流量显着取决于霉菌的高度:虽然标准的地图型霉菌腔均匀地填充,并且在大多数情况下,在大多数情况下,低空腔高度(<500 l m)可以导致前部的流量集中在几个流动路径上(forling parsssssssssssssssssssssspersifecifecte)。我们开发了一种数字方法来描述这种不均匀的聚合物流。流动前填充的原因似乎是聚合物粘度的局部变化,可在不同的流路径上强制颈部。指法会导致空气陷阱的形成和过多的电线。我们还开发了新的实验方法来测量腔内的压力分布:我们的传感器基于Fujufilm的市售,具有压力敏感的薄膜,并且在最高180的温度下运行。2010 Elsevier Ltd.保留所有权利。