•进行了2D材料(例如石墨烯和MOS 2)的CVD生长。•使用拉曼,SEM,AFM,TOF-SIMS,TEM,XPS表征优化了薄膜生长。•使用断裂力学的测量的粘附特性(硅 - 环氧,石墨烯 - 赛,MOS 2 -Sapphire)。•通过DCB骨折实验获得了石墨烯sapphire的正常和剪切相互作用。•对Abaqus进行了有限元模拟,以开发2D材料的传输图。•通过机械分层和表面能辅助过程实现了MOS 2的大面积转移。
海军优势 使用光纤 DTS 技术可为海军带来多种潜在优势。首先,它是唯一能够高分辨率识别大面积渗漏的技术。这可验证并改进地下水和污染物运输模型。它可精确定位值得关注的区域并排除渗漏程度极低或没有渗漏的区域。例如,最近一项 50 英亩的 DTS 研究发现,渗漏发生在不到 5% 的场地面积内。这种高分辨率数据可提高后续调查的成本效益,并让监管机构更加确信该场地的特征已得到充分描述。
神圣的树林是自然或近乎自然的植被的斑块,由当地社区献给其祖先的精神或神灵。他们在贾坎德邦(Jharkhand),恰蒂斯加尔邦(Chhattisgarh)和拉贾斯坦邦(Rajasthan)的奥兰斯(Orans)被称为Sarnas。这些树林的尺寸各不相同,范围从小树木群到跨越几英亩的大面积。有些由一棵神圣的树组成,例如贾坎德邦的萨尔树。神圣的树林在2002年的《野生动植物(保护)修正案》中的“社区储备”中得到了法律保护。
地下建筑的渗漏会导致软粘土中随时间而产生的沉降。在地质分层、地下水条件和土壤压缩性存在空间变异的城市地区,可能会发生差异沉降,从而对建筑物造成损坏。目前,损害评估方法依赖于一维公式进行沉降预测,无法代表异质环境中因水位下降而导致的沉降。因此,在本文中,我们提出了一种独立方法,将空间分布的非高斯沉降数据整合到区域范围内的早期建筑物损害评估中。然后,使用二维耦合水力学有限元模型和高级本构模型计算变形,以计算大面积的三维网格(沿 x 和 y 方向)随时间而产生的沉降。然后,根据这些绿地模拟计算建筑物损坏,并使用每个建筑物特定沉降剖面的常用损坏参数,并将其与损坏标准进行比较。该方法通过模拟下层(受限)含水层中孔隙压力下降 10 kPa 和 40 kPa 的情景,应用于瑞典哥德堡市中心的 215 栋建筑物。研究了几种情景,并评估了损坏参数与损坏标准之间的相关性。最后,进行了网格分辨率的敏感性研究,并根据观察到的损坏数据进行了验证。所提出的方法为大面积非高斯定居点的早期损坏评估提供了一种有效的方法,以便进一步调查和缓解措施可以针对损坏风险最高的建筑物和位置。
二维拓扑绝缘体又称量子自旋霍尔绝缘体,具有受拓扑结构保护的边缘态[1]。由于该通道可支持无耗散电子传输,有望实现下一代低损耗电子器件,得到了广泛的研究[2−4]。自2006年起,斯坦福大学Zhang团队预言在HgTe/CdTe量子阱中存在量子自旋霍尔效应(量子自旋霍尔效应,QSH)[5]。次年,维尔茨堡大学物理研究所Molenkamp团队的实验证实了这一点[6]。研究人员进行了大量的理论预测和实验探索,以寻找更加实用的天然QSH材料[7−9]。与复杂量子阱结构相比,天然QSH材料在样品制备和异质结器件构筑方面更具有优势。但在天然单层二维体系中实现QSH效应仍然十分困难,自上而下的机械剥离法和自下而上的外延生长法是成功制备单层QSH材料的两种常用方法。