• 识别有机化合物的非生物来源(生命起源前化学和早期地球环境,PCE3,https://www.prebioticchem.org/) • 大分子的合成和功能以及生命的起源(PCE3,https://www.prebioticchem.org/) • 早期生命和日益复杂的生命(LIFE,https://www.lifercn.org/) • 生命与物理环境的共同进化(LIFE,https://www.lifercn.org/) • 识别、探索和描述宜居性和生物特征的环境(生命检测网络,NfoLD,https://www.nfold.org/;海洋世界网络,NOW,https://oceanworlds.space/) • 构建可居住世界(海洋世界网络,NOW,https://oceanworlds.space/;以及系外行星系统科学联盟,NExSS;https://nexss.info/) 这些研究主题由五个受社区启发的目标统一起来作为天体生物学项目的核心支柱,它们仍然是至关重要的:促进跨学科科学,加强 NASA 的任务,促进行星管理,增强社会兴趣,激励子孙后代。信息请求。在提交此文件时,NASA 的天体生物学项目正在准备一份信息请求 (RFI),以寻求广泛的社区意见,以制定即将出台的 2025 年 NASA 天体生物学十年研究、探索和综合进步战略 (NASA-DARES 2025)。该战略将通过建立一个全面的框架来塑造 NASA 天体生物学的未来,该框架将正式确立天体生物学作为 NASA 科学研究和任务组合的跨领域支柱的新兴角色——这一主题正在成为
1全球粮食安全研究所,生物科学学院,贝尔法斯特皇后大学,贝尔法斯特19号,贝尔法斯特,英国BT9 7BL。2海湾地区环境研究所,NASA AMES研究中心,加利福尼亚州山景,94035。3 NASA AMES研究中心,加利福尼亚州山景,94035。4罗马萨皮恩扎大学生物学与生物技术系,意大利00185。5西弗吉尼亚大学地质与地理系,摩根敦,西弗吉尼亚州,26506-6300。 6拉脱维亚大学微生物学与生物技术研究所,耶尔加瓦斯·斯特。 7博洛尼亚大学生物,地质与环境科学系,波洛尼亚大学,意大利40126。 8托斯西亚大学生态与生物科学系,维特尔博,01100,意大利。 9意大利南极国家博物馆(MNA),真菌学部分,热那亚,16128年,意大利。 10地球与行星物理学的主要实验室,地质与地球物理学研究所,中国科学院,北京,中国100029。 11地球与行星科学系,新墨西哥州新墨西哥州,新墨西哥州阿尔伯克基,87131。 12 CNR,CTR Biophys Mol UPR 4301,Rue Charles Sadron,CS 80054,Orleans,F-45071,法国。 13海洋生物资源与生物技术研究所,Irbim-CNR,墨西拿,98122,意大利。5西弗吉尼亚大学地质与地理系,摩根敦,西弗吉尼亚州,26506-6300。6拉脱维亚大学微生物学与生物技术研究所,耶尔加瓦斯·斯特。 7博洛尼亚大学生物,地质与环境科学系,波洛尼亚大学,意大利40126。 8托斯西亚大学生态与生物科学系,维特尔博,01100,意大利。 9意大利南极国家博物馆(MNA),真菌学部分,热那亚,16128年,意大利。 10地球与行星物理学的主要实验室,地质与地球物理学研究所,中国科学院,北京,中国100029。 11地球与行星科学系,新墨西哥州新墨西哥州,新墨西哥州阿尔伯克基,87131。 12 CNR,CTR Biophys Mol UPR 4301,Rue Charles Sadron,CS 80054,Orleans,F-45071,法国。 13海洋生物资源与生物技术研究所,Irbim-CNR,墨西拿,98122,意大利。6拉脱维亚大学微生物学与生物技术研究所,耶尔加瓦斯·斯特。7博洛尼亚大学生物,地质与环境科学系,波洛尼亚大学,意大利40126。8托斯西亚大学生态与生物科学系,维特尔博,01100,意大利。9意大利南极国家博物馆(MNA),真菌学部分,热那亚,16128年,意大利。10地球与行星物理学的主要实验室,地质与地球物理学研究所,中国科学院,北京,中国100029。11地球与行星科学系,新墨西哥州新墨西哥州,新墨西哥州阿尔伯克基,87131。12 CNR,CTR Biophys Mol UPR 4301,Rue Charles Sadron,CS 80054,Orleans,F-45071,法国。13海洋生物资源与生物技术研究所,Irbim-CNR,墨西拿,98122,意大利。
盖亚任务通过提供极其精确的全球参考天体测量技术,彻底改变了天体物理学。超越盖亚实现窄场微角秒 (uas) 天体测量技术,通过测量主星的反射运动,可以探测到类似地球的系外行星 (Unwin 等人,2008)。尽管径向速度 (RV) 和凌日等流行方法已经成功发现了数千颗系外行星,但只有天体测量探测方法才能让我们完全确定轨道并测量系外行星的质量 1 。系外行星的质量是确定该行星是否适合生命存在的关键参数,因为其大气和地球物理过程在很大程度上取决于质量。与 RV 方法相比,天体测量探测受恒星活动扰动的影响较小,对长周期系外行星具有更好的灵敏度,因此可以与 RV 和凌日方法相辅相成。针对这一独特的作用,NASA将“恒星反射运动灵敏度-天文测量”列为测量可居住系外行星目标质量的一级技术差距(NASA战略技术差距)。
参考文献:[1] Schuerger, AC 等。 (2019) 天体生物学, 19 (6) doi: 10.1089/ast.2018.1952。 [2] Moores, JE 和 Schuerger, AC (2020) 天体生物学 20 (12) 1450 – 1464 doi:10.1089/ast.2019.2205。 [3] Lloyd,V. 等人。 (2022)https://www.nasa.gov/news-release/nasa-identifies-candidate-regions-for-landing-next-americans-on-moon/ [4] Rummel, JD 等人。 (2014)天体生物学,14(11),887-968。 Doi: 10.1089/ast.2014.1227 [5] Fajardo-Cavazos, P. 等人。 (2008)应用大约。微生物学。 , 74(16),doi:10.1128/AEM.00891-08 [6] Moores, JE 等人。 (2007)伊卡洛斯192,417-433。 [7] Kloos 等人。 (2021)Acta Astronautica 178 432-451 doi:10.1016/j.actaastro.2020.09.012。 [8] 威廉姆斯,J.-P.等(2019)地球物理学报。决议124 (10) doi:10.1029/2019JE006028。
这本书并不长,只有 180 页左右的文字,分为 7 个简短的章节。必须承认,这本书并不容易读,但仍然值得一读。导言一章可能是全书最薄弱的一章,那些没有良好国际关系理论基础或不认同现实主义观点的人可以跳过这一章。这一章几乎是 Dolman 对权力平衡和战略意义的看法的宪章,虽然它指明了接下来的内容,但完全可以忽略或跳过。但本书的其余部分并非如此。第 2 章是本书的真正基础:题为“从地缘政治到天体政治”,Dolman 追溯了地缘政治概念的兴起,然后以完全合乎逻辑的方式推断出天体政治。他首先从帕克对地缘政治的定义开始,即“对国家作为空间现象的研究,旨在了解权力的地理基础”(第 13 页),然后借鉴哈尔福德·麦金德爵士和德国现实政治学派等人的著作,将天体政治定义为:“研究外层空间地形与技术之间的关系,以及政治和军事政策与战略的发展”,然后(故意用更消极的语气)将天体政治定义为:“一种决定论的政治理论,它操纵国家与政治之间的关系”。
最直接的轨道计算发生在中心天体比轨道天体质量大得多的情况下,例如人造卫星绕地球的轨道。我们假设行星绕太阳的轨道也是如此——这是一个很好的近似值,尤其是对于小行星。然而,在双星系统中,两颗恒星的质量相似,这种情况并不适用。即使对于行星运动,一旦考虑到太阳的轨道运动,也需要进行微小但重要的修正。好消息是,我们可以应用所有旧结果,并进行适当的修改。
作者在向 ASR 投稿时,需要从以下类别中选择一个合适的论文类别(如果不是获批准的特刊):天体物理学;太阳系天体;地球科学;地球磁层和上磁层;太阳和日球物理学;太空基础物理学和材料科学;天体动力学和空间碎片;空间技术、政策和教育。对于 LSSR,请从以下类别中选择:天体生物学;宜居性和生命支持;空间辐射测量和探测;辐射环境、生物学和健康;植物和动物的重力生物学。所有作者还需要提出 3-5 位潜在审稿人的姓名。被接受的论文将在接受后不久获得一个数字对象标识符 (DOI),并以电子版形式出现在 Science Direct 上,即在印刷前即可引用。爱思唯尔支持 OpenAccess 和电子补编。
1 斯洛伐克科学院天文研究所,Dubravska cesta 9, 84504 布拉迪斯拉发,斯洛伐克 2 伯尔尼大学应用物理研究所和厄施格气候变化研究中心、微波物理,伯尔尼,瑞士 3 都灵天体物理天文台国家天体物理研究所,Via Osservatorio 20,Pino Torinese 10025,意大利 4 都灵大学 - 物理系,Via Pietro Giuria 1,都灵,TO,意大利 5 捷克科学院天文研究所,Fricova 298,25165 Ondˇrejov,捷克共和国 6 IMCCE,巴黎天文台 - PSL,Denfert Rochereau,Bat。 A.,75014 巴黎,法国 7 苏黎世联邦理工学院粒子物理和天体物理研究所,瑞士 8 陶森大学物理、天文学和地球科学系,美国马里兰州陶森 9 亚利桑那州立大学地球与空间探索学院,美国亚利桑那州坦佩