摘要:心脏外流(OFT)中的异常是最常见的先天性心脏缺陷(CHD)之一。在胚胎发生过程中,心脏OFT是心脏动脉极的动态结构。心脏管伸长通过添加来自咽部,中胚层到两端的细胞。这些祖细胞被称为第二心脏(SHF),是20年前首次识别为对形成心管的生长和OFT的主要贡献者的生长至关重要。SHF开发的扰动会导致CHD的共同形式,包括大动脉异常。 oft的发育也取决于多种细胞类型之间的旁分泌相互作用,包括心肌,心内膜和神经rest谱系。 在本出版物中,专门针对安德里亚娜·吉滕伯格(Andriana Gittenberger-de Groot)教授及其对心脏发展和CHD领域的贡献,我们回顾了她对FAST开发的一些开创性研究,对许多促成OFT的多种细胞类型的多样性具有特别感兴趣。 我们还讨论了选定的关键发现的临床意义,以理解我们对CHD的病因,尤其是经常畸形。SHF开发的扰动会导致CHD的共同形式,包括大动脉异常。oft的发育也取决于多种细胞类型之间的旁分泌相互作用,包括心肌,心内膜和神经rest谱系。在本出版物中,专门针对安德里亚娜·吉滕伯格(Andriana Gittenberger-de Groot)教授及其对心脏发展和CHD领域的贡献,我们回顾了她对FAST开发的一些开创性研究,对许多促成OFT的多种细胞类型的多样性具有特别感兴趣。我们还讨论了选定的关键发现的临床意义,以理解我们对CHD的病因,尤其是经常畸形。
肾细胞癌(RCC)是一种恶性肿瘤,占成年癌症的3%,20% - 30%的患者在开始时被诊断为转移性RCC,而转移性RCC全身治疗的中位总生存期(OS)范围为16个月至16个月至50个月。免疫疗法是一种依赖于免疫细胞和肿瘤细胞特异性结合的新型疗法,可能是晚期肾细胞癌的潜在疗法。虽然已经在各种实体瘤中研究了嵌合抗原受体NK细胞(CAR-NK)疗法,但几个团队也报道了对其在RCC的应用的特定研究。在这篇综述中,我们介绍了NK细胞的细胞毒性机制,总结了RCC和NK细胞之间的联系,并对肾细胞癌Carcinaloma Car-NK治疗发布了新的见解。迄今为止,重点关注肾细胞癌和NK细胞的大多数研究仅声称NK细胞细胞毒性和NK细胞免疫抑制甚至免疫逃生的机制,但所涉及的分子也可能是肾细胞癌Carcinaroma carcinoma carcinoma car-NK疗法的有趣靶标。
计算机生成的3维(3D)重建正在成为先天性心脏病(CHD)中不断增长的技术。已经清楚地证明了虚拟现实(VR)或3D打印模型的好处,尤其是在处理复杂的解剖学或计划最小入侵程序的情况下[1]。的确,对不同的解剖结构之间的空间关系有更深入,更广泛的理解,可以采用出色的手术方法,在某些情况下完全改变它[2]。然而,需要进一步的大规模研究来消除3D重建的潜力,以减少手术时间或预防先天性心脏手术的并发症,就像其他外科手术领域已经达到的那样[3-4]。尽管如此,这些系统的临床使用的一个局限性是使用当前可用软件所需的相对较高的成本和专业知识的程度。此外,由于缺乏标准化方法,较长的处理时间和缺乏心脏周期的动态代表,这些技术的传播受到了限制。随着该领域的发展,新的选项已成为获取虚拟模型所需平台的复杂性的潜在简化。DIVA软件(增强和虚拟环境中的数据集成和可视化,巴黎研究所)是一种新的VR技术,允许快速且用户友好的3D重新建立CHD [5]。我们以前将该软件与标准3D渲染技术进行了比较,并得出结论,Diva是系统的一致性和更快的[6]。在本研究中,我们分析了具有有限专业知识的用户对该软件的使用,以评估CHD中3D重建的潜力。
特殊血浆取自患有先天性缺陷(严重或中度)或具有特殊特征的患者。不添加缓冲液或防腐剂。在 -80° C 下快速冷冻,血浆保持基质完好无损。所有血浆在 -40° C 至 -80° C 下储存时均稳定。我们在运输过程中使用干冰仔细包装。无添加剂或防腐剂。保质期 > 1 年。塑料瓶。
先天性心脏病(CHD)是最普遍的主要先天缺陷之一,但其原因在很大程度上尚不清楚。遗传因素和环境因素都起作用。动物和人类诱导的多能干细胞模型已经表明了这些因素如何破坏心脏发育(Liu等,2017; Xu等,2022),但人类的确切机制尚不清楚。高级遗传和基因组方法具有显着改善的冠心病诊断和疗法,尤其是通过产前基因检测,实现了早期,更准确的诊断和筛查。随着成年期的生存率有所改善,新的研究方向已经出现了,包括探索手术结果的遗传基础和开发疗法以提高冠心病患者的生活质量。在童年时期无法获得现代遗传技术的冠心病成年人人口不断增长,强调了对正在进行的研究和量身定制的医疗保健的需求(Bhatt等,2015)。该研究主题总共包含14篇文章,包括基础研究,临床病例报告和MINI综述。新颖的发现集中于儿科和成人冠心(ACHD),涵盖了冠心病的原因,诊断和治疗学的最新进展。这些研究共同证明了将遗传数据与临床
trim71是在人类中大量表达的基因,在早期的胚胎发生和神经分化中起着至关重要的作用,通过与靶MRNA结合,触发翻译抑制或mRNA降解。3 Qiuying Liu等人,研究人员使用交联的免疫沉淀和测序(CLIP-SEQ)技术探索了小鼠中CH相关的突变。这项研究很重要,因为蛋白质对人类表现出相似的反应。4研究表明,突变的TRIM71蛋白与不同的靶标mRNA结合,表明“功能的获取”。具体而言,小鼠中的R595H-TRIM71与CTNNB1基因中的mRNA结合,该基因编码了β-catenin蛋白,这对于干细胞分化至关重要。5抑制其翻译可阻止神经发育必需蛋白质的产生。相反,R783H-TRIM71与LSD1 mRNA结合,抑制其翻译并导致干细胞分化的缺陷。5
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
摘要:先天性心脏缺陷(CHD)是人类出生缺陷的最常见形式。它们发生在1000个活产中的9个中,并被定义为心脏的结构异常。由于疾病的异质性及其多因素病因,因此很难理解CHD。基因组测序的进步使得可以识别CHD中涉及的遗传因素成为可能。然而,仅在少数冠心病病例中发现了遗传起源,这表明非亲属(环境)危险因素对CHD的病因的贡献。母体的植物前糖尿病与先天性心脏病的风险增加了三到五倍,但基本的分子机制却不完全了解。根据目前的假设,高血糖是糖尿病妊娠中的主要致畸剂。它可以直接通过遗传和表观遗传失调和/或间接产生活性氧(ROS)诱导细胞损伤。本综述的目的是总结有关子宫内高血糖状况的心脏发育改变的分子机制的关键发现。它还介绍了用于实验性造口糖尿病的各种体内和体外技术。最后,建议采用新的方法来扩大我们对该主题的理解并制定新的预防策略。
作者所属机构:瑞士苏黎世大学儿童医院儿童发展中心(von Werdt、Schmid、Naef、Liamlahi、Latal、Ehrler);瑞士苏黎世大学儿童医院儿童研究中心(von Werdt、O'Gorman、Schmid、Naef、Kretschmar、Liamlahi、Latal、Ehrler);瑞士苏黎世大学法医医学研究所法医毛发分析中心(Binz);瑞士苏黎世大学儿童医院 MR 研究中心(O'Gorman);瑞士洛桑大学初级保健和公共卫生中心(Unisanté)生物统计学部(Rousson);瑞士苏黎世大学儿童医院外科部儿科心脏中心儿科心脏病学(Kretschmar);大学研究优先计划(URPP),发展和学习中的自适应大脑回路(AdaBD),瑞士苏黎世大学(Latal、Ehrler)。
• 筛查适用于无症状婴儿。如果婴儿在筛查前 24 小时出现发绀、呼吸急促、呼吸工作量增加、肿胀、喂食时容易疲劳、出汗或体重增长缓慢等迹象,应尽快进行评估。• 选择部位:右手;任一只脚。• 将光电探测器放在手/脚的外侧(第 4 至第 5 个手指/脚趾下方)。• 将传感器胶带缠绕在四肢上。• 确保光发射器正对着光电探测器。• 如果使用可重复使用的传感器,请使用供应商推荐的胶带固定传感器;不要使用胶带或用手将传感器固定到位。• 为了获得最佳效果,在出院前尽可能在出生后 24 小时内进行脉搏血氧饱和度筛查。• 婴儿不应感到痛苦或心血管不适。• 确保婴儿清醒、舒适且安静。父母可以抱着婴儿,如果襁褓可以帮助婴儿保持平静,也可以将婴儿包裹起来。任何动作、颤抖或哭泣都会影响读数的准确性。• 使用经食品和药物管理局批准用于新生儿的脉搏血氧仪。建议使用环绕式传感器。