摘要高级技术大型空间望远镜(ATLAST)是一个8米至16米的Uvoir空间天文台的概念,用于在2025-2030 ERA中发射。宣传将使天文学家能够在现代天体物理学的最前沿回答基本问题,包括“银河系其他地方的生活?”我们提出了一系列科学驱动程序以及ATLAST的最终性能要求(8至16 milliarcsecond Angular分辨率,0.5 µM波长的衍射有限成像,最小收集面积为45平方米,对光波长的高灵敏度从0.1 µ M到2.4 µm至2.4 µm,到2.4 µm,高稳定性,在波段感应和对照中的高稳定性)。我们还讨论了使Atlast构建所需的技术开发的优先级,其成本与当前一代的天文台级太空任务相媲美。关键字:高级技术大型空间望远镜(Atlast);紫外线/光学空间望远镜;天体物理学;天体生物学;技术发展。1。简介
• 使用阿西亚戈天文台的哥白尼 182 厘米望远镜对低阶波前传感甜甜圈技术进行天空性能测试。您将描述望远镜光束的光学像差,并将该技术的性能与其他波前传感技术(如 Shack-Hartmann 和金字塔波前传感器)进行比较。
核研究所(ATOMKI)地球物理与太空科学研究所布达佩斯特大学技术与经济学大学(BME,全球)布达佩斯特技术与经济学大学(BME)(BME,土木工程学院)布达佩斯特技术与经济学大学(BME)技术与经济学系(BME)(BME,Optics,Optics,Optics),BUTAPEST INFENOMITION of BUTAPEST INF型技术和经济学系(BME)和地球科学(ELKH,地球化学研究所)天文学与地球科学研究中心(ELKH,KONKOLY天文台)自然科学自然科学研究中心debrecen大学(UD EötvösLoránd大学,太空研究小组能源研究中心LECHNER知识中心,卫星测量天文台Lechner知识中心,遥感部门,Óbuda大学,地球形式学会匈牙利气象学服务学院SZEGED,SZEGED,SZEGED,非线性动力学,SZEGECERICICS INSPERAICS INSCERTICT of SERTORTIC固态物理与光学研究所物理Wigner物理研究中心
a 耶鲁大学跨学科生物伦理中心,美国康涅狄格州纽黑文 b 约翰霍普金斯大学医学院,美国巴尔的摩 c 舍伍德天文台,曼斯菲尔德和萨顿天文学会,英国诺丁汉郡 d 内华达大学拉斯维加斯分校,美国内华达州拉斯维加斯 e 亚利桑那大学,美国 f 突破奖基金会,美国华盛顿 g 神学研究生院,美国伯克利 h 贝尔格莱德天文台,塞尔维亚贝尔格莱德 i 克莱姆森大学,美国克莱姆森 j 千叶大学,日本千叶 k 伦敦大学学院教育学院,英国伦敦 l 爱丁堡大学神学院,英国 m 劳伦斯理工大学,美国绍斯菲尔德 n 热舒夫信息技术与管理大学社会科学系,波兰热舒夫
a 耶鲁大学跨学科生物伦理中心,美国康涅狄格州纽黑文 b 约翰霍普金斯大学医学院,美国巴尔的摩 c 舍伍德天文台,曼斯菲尔德和萨顿天文学会,英国诺丁汉郡 d 内华达大学拉斯维加斯分校,美国内华达州拉斯维加斯 e 亚利桑那大学,美国 f 突破奖基金会,美国华盛顿 g 神学研究生院,美国伯克利 h 贝尔格莱德天文台,塞尔维亚贝尔格莱德 i 克莱姆森大学,美国克莱姆森 j 千叶大学,日本千叶 k 伦敦大学学院教育学院,英国伦敦 l 爱丁堡大学神学院,英国 m 劳伦斯理工大学,美国绍斯菲尔德 n 热舒夫信息技术与管理大学社会科学系,波兰热舒夫
资料来源:谁东地中海地区卫生天文台;世卫组织全球健康天文台。注意:UNICEF/WHO/WH/WB关节儿童营养不良的营养不良估计值使用具有异质误差项的惩罚纵向混合模型以Logit(Log-ODDS)量表进行建模。使用JME Country数据集生成了以国家数据源的收集来生成的国家建模估计值。由于这种方法,估计可能与对成员国的官方估计有所不同(即,在给定年份中对特定国家的家庭调查的阻碍率并未报告为当年该国家的患病率;而不是该国的流行率;而是它以建模的估计为代表)。此处描述了方法:https://www.who.int/publications/i/item/9789240025257。浪费定义为重量高的百分比,比中位数低两个或多个标准偏差。发育迟缓定义为高度的百分比,比中值低两个或多个标准偏差。超重定义为重量高的百分比,高于中位数两个或多个标准偏差。
作为NASA对宇宙机器人探索的领先中心,JPL开发了使我们追求发现的技术,以使人类受益。尽管我们的技术要启用科学,但它们通常可以双重用于商业和紧急的社会需求。尽管大流行,但JPL达到了2020年最大的目标。下一个火星漫游者毅力是健康的,并且在通往红色星球的路上都很好。毅力具有创造力,也称为火星直升机:第一个飞向另一个世界的系统。命名为毅力和独创性的孩子不知道适合这些名字在2020年如何证明。在过去的12个月中,轨道碳天文台3开始了其任务,即与其他ISS仪器一起从ISS继续全球OCO-2二氧化碳测量值;深空原子时钟任务启动并展示了微型和超专业的时序技术,使未来的航天器能够在无地面干预的情况下独立导航。 Spherex被选为未来的近红外太空观测站,该天文台将进行全天空调查,以测量约4.5亿个星系的近红外光谱。
NASA实现这一目标的核心是2024-2034地球科学对行动战略的出版,该战略记录了地球科学部(ESD)的战略目标和结果。地球科学到行动策略旨在整体观察,监视和理解地球系统,并提供可信赖的信息以推动地球弹性活动。随着浮游生物,气溶胶,云,海洋生态系统(PACE)任务的推出,NASA完成了代理机构优先目标的所有计划要素,与使用当地的空间有利位点,以提高对地球系统,过程和气候变化的理解。pace将提供大气和海洋观察的结合,以使社会受益于水质,人类健康,渔业管理,生态预测,灾难影响和空气质量的领域。NASA还推进了地球系统天文台(ESO),该天文台将提供空前的,整体的地球观点 - 显着促进我们测量,预测和响应对我们家居星球的变化的能力。的表述开始了大气观测系统(AOS),表面生物学和地质(SBG)任务,以及宽限期(Grace-c,以前是群众变革)的任务进入了发展。
中国嫦娥六号着陆器上月球背面的首个激光反射器以及未来嫦娥七号极地任务中的部署。 Y. Wang 1 , S. Dell'Agnello 2 , K. Di 1 , M. Muccino 2 , H. Cao 3 , L. Porcelli 2 , X. Deng 3 , L. Salvatori 2 , J. Ping 4 , M. Tibuzzi 2 , Y. Li 5 , L. Filomena 2 , Z. Kang 6 , M. Montanari 2 , Z. 孟 3 , L. Mauro 2 , B. 谢 1,7 , M. Maiello 2 , 1 中国科学院空天信息研究所遥感科学国家重点实验室,北京,100101,中国 (dikc@aircas.ac.cn), 2 国家核电研究所 - 弗拉斯卡蒂国家实验室 (INFN–LNF),通过费米40,00044,意大利弗拉斯卡蒂(simone.dellagnello@lnf.infn.it),3 中国空间技术研究院北京空间飞行器总体工程研究所,北京,100094,中国,4 中国科学院国家天文台,北京,100101,中国,5 中国科学院云南天文台,昆明,650216,中国,6 中国地质大学土地科学与技术学院,北京,100083,中国,7 中国科学院大学,北京,100101,中国。
1 加州理工学院喷气推进实验室,4800 Oak Grove Drive,帕萨迪纳,CA 91109,美国 2 Tellus1 Scientific,亨茨维尔,AL 35899,美国 3 亚利桑那大学天文系和斯图尔特天文台,933 N. Cherry Ave.,图森,AZ 85719,美国 4 斯坦福大学,382 Via Pueblo Mall,物理系,斯坦福,CA 94305-4060,美国 5 戈达德太空飞行中心,8800 Greenbelt Rd,格林贝尔特,MD 20771,美国 6 艾姆斯研究中心,PO Box 1,莫菲特菲尔德,CA 94035-1000,美国 7 欧洲南方天文台,Alonso de C´ordova 3107,维塔库拉,圣地亚哥,智利 8 太空望远镜科学研究所,3700 圣马丁9 太空望远镜科学研究所,史蒂文·穆勒大楼,3700 San Martin Drive,巴尔的摩,马里兰州 21218,美国 10 普林斯顿大学,新泽西州普林斯顿 08544,美国 11 IPAC,MC 314-6,加州理工学院,加利福尼亚州帕萨迪纳,91125