石榴在人类历史上占有重要地位,是最古老的栽培农产品之一。众所周知,石榴的原产地是地中海、西亚和伊朗,如今在美国(加利福尼亚和亚利桑那)、阿根廷、中国、阿富汗、印度、阿拉伯、智利和墨西哥北部都有种植。1、2 石榴是石榴科中最重要的植物。石榴的名称来源于 Malum granatum,在拉丁语中意为“颗粒状的苹果”。1 石榴有多个多刺的枝条,叶子是椭圆形的;可食用的果实是一种浆果,由白色或红色单花的子房产生,里面有种子和果肉。3 石榴的 50% 由可食用部分组成,50% 由果皮组成(Fawole 和 Opara)。4
实践。可以从自然中获得的替代染料。本研究的目的是使用替代染料使用Dragon Fruit Peel和Turi Flower的染料来制备各种洋葱根细胞中有丝分裂分裂过程。使用南瓜方法获得正确的准备。数据。本研究中使用的仪器是有效的观察表。结果表明,使用Dragon Fruit皮肤和Turi Flowers制剂的着色成功,并获得了清晰的着色结果。使用Turi Flowers的实践活动中的着色比火龙果的色素更好。天然染料中的天然染料可以用作壁球方法中的替代染料,以观察洋葱根有丝分裂,以取代合成染料。
染料用于各种行业,包括纺织品,化妆品,药品和食物。消费者越来越多地寻求环保和可持续的产品,这推动了对可再生生物来源的天然染料的需求。生物色,这些生物色源自植物,水果,蔬菜和微生物,在广泛的应用中,它作为安全的,无毒的替代品的流行度[7]。2.1生物色的生物色的来源可以来自广泛的生物材料,包括植物,水果,蔬菜,花,昆虫和微生物。每个源提供独特的颜色化合物,可以提取并用作天然染料。生物颜色来源的常见例子包括[18]。基于植物的染料:诸如靛蓝,姜黄,疯子和指甲花等植物中含有天然色素,可提取并用于染色纺织品和其他材料。水果和蔬菜染料:浆果,甜菜,洋葱和菠菜等水果和蔬菜含有充满活力的色素,可以在食物,化妆品和纺织品中提取和用作天然着色剂。微生物染料:某些细菌,真菌和藻类产生具有多种颜色的颜料,例如红色,黄色,绿色和蓝色。这些微生物颜料可以被培养和收获以用于染色。
该部门涵盖了源自当地植物的植物产品的加工,生产和商业化,用于在健康,健康,美容以及食品和饮料等行业中。它包括但不限于草药补充剂,精油,植物提取物,茶和输液,化妆品和护肤产品,香料和调味料,药用植物,天然染料和色素,植物饮料,草药,传统药物,传统药物以及植物性食品以及基于植物的食物和食品和食品。
,我们通过一种溶剂提取方法从天然染料源蓝莓中提取花色苷,用于在制造染料敏化太阳能电池(DSSC)中用作敏化剂。在提取花青素时,我们使用了乙腈,丁醇,乙醇和丙酮等溶剂,并检查了它们对DSSCS性能的影响。当前,可用的商业级二氧化钛(TIO 2)粉末由80 mol%金红石和20 mol%的解剖酶相组成。在准备光阳极的制备中,Tio 2粉末是通过医生刀片技术应用的。准备好的光轴浸入了提取的花青素染料中,并在整个过程中屏蔽了光线,并在不同的持续时间内暴露于不同的持续时间。为了制备电极,将大约1 nm厚的铂膜溅射到粘锡氧化物(ITO)玻璃底物上。最后,通过染料染色将涂层光射流用电极密封。为了评估制造的DSSC的性能,通过紫外线可见光谱(UV- VIS)和太阳能模拟器测量了入射光子到电子转换效率(IPCE)。结果表明,从丁醇中蓝莓提取的染料持续12小时的DSSC效率最高。在这项研究中,TERT叔丁醇是用于制造DSSC的最佳提取溶剂,从蓝莓中提取的花青素,效率为0.45%,填充系数为68.20%。需要进一步的研究才能找到一种更合适的溶剂和提取方法,而这项研究的结果证明,从天然染料来源(例如蓝莓在太阳能细胞技术中)使用染料是有希望的。
使用ZnO纳米颗粒层生产染料敏化的太阳能电池为潜在的低成本制造提供了几个优点,并适合将来的成本效益工业生产。使用ZnO纳米颗粒和自然染料的生产,从九重二指从九重二指纳米颗粒和带有红色,紫罗兰色和肾上腺素的mutabile labill中提取的天然染料。目的是通过通过沉浸式方法形成带有有机染料的ZnO薄膜来创建DSSC的光阳极。使用医生刀片技术将制造的电极涂在玻璃基板上,然后将电极浸入染料溶液中。根据其将阳光转化为电能的能力,对制造的太阳能电池的性能进行了分析。参数(例如效率,电流 - 电压特性和功率输出)的测量和评估。关键字:染料敏化的太阳能电池;制造;特征。
颜料是在食品[1],美容产品和制药行业[2],[3]中经常使用的着色剂。颜料是一种通过波长选择吸收的物质,可修饰反射或发射光的颜色。颜料可以合成和自然地获得[4]。虽然合成色素是化学制成的,并且经常具有比天然色素相比具有可取的颜色一致性和质量,但天然色素是从矿物,植物或动物中取的。如今,天然颜料是一种天然染料之一,可以代替合成染料在各种应用中,尤其是在食品领域中。 天然色素可以源自包括细菌,真菌和藻类在内的微生物以及植物和动物[5],[6]。 色素的化学结构及其对光的反应对其颜色产生了影响。 我们的眼睛感知到颜色,因为某些颜料在反射其他颜料时吸收了某些波长。 颜色的寿命可能会因其化学结构及其存在的环境而变化或改变。 例如,某些色调更适合特定应用,因为它们在暴露于热,光或化学物质时不会很容易褪色[7]。 并非每个着色剂都可以安全地用于所有应用中。 如果食用,吸入或浸泡在皮肤上,有些人可能有毒。 因此,为特定应用程序选择它们至关重要。如今,天然颜料是一种天然染料之一,可以代替合成染料在各种应用中,尤其是在食品领域中。天然色素可以源自包括细菌,真菌和藻类在内的微生物以及植物和动物[5],[6]。色素的化学结构及其对光的反应对其颜色产生了影响。我们的眼睛感知到颜色,因为某些颜料在反射其他颜料时吸收了某些波长。颜色的寿命可能会因其化学结构及其存在的环境而变化或改变。例如,某些色调更适合特定应用,因为它们在暴露于热,光或化学物质时不会很容易褪色[7]。并非每个着色剂都可以安全地用于所有应用中。如果食用,吸入或浸泡在皮肤上,有些人可能有毒。因此,为特定应用程序选择它们至关重要。
Navi Mumbai抽象的颜色是对食物质量和营养含量的量度。为食物添加颜色的目的是使它们具有吸引力,检查加工过程中的颜色损失,以提高质量,并影响消费者购买产品。在Augment当下,由于对治疗和药用特性的认识越来越高,对自然染料的需求正在增加,并且在公众中的益处以及合成色的深刻毒性。天然染料是源自植物,昆虫,动物和矿物等自然存在的来源的染料。在所有天然染料中,基于植物的颜料具有药用值,因此最优选。今天,食品行业和颜色供应商不断动机,致力于改善颜色准备的技术和物理特性。开发成本效益,可行的技术来制备食品颜色及其在食品中的应用是当天的挑战和需求。本评论文章涵盖了与合成色以及有关主要颜料的详细基本化学信息相比,食用颜色应用和食品稳定性的技术进步的最新发展。关键字:食物添加剂,天然食品,药物特性,颜料简介盛宴是眼睛。这是一个具有非常重要含义的旧公理,并描述了颜色的重要性。人们的看法通常受食物外观的影响,这决定了风味。因此,重要的是要注意,食品或饮料的颜色通常比其他有关各种研究的味道的信息都占主导地位。已经观察到,食品或饮料的颜色可以在风味感知中发挥深刻的唯一唯一的唯一[1]不同的食物与人们不同的颜色相关。当这种看法上使用它时,对食物味道的心理学有害。因此,随着颜色吸引人们,颜色会强烈影响酒店业。颜色是食物的重要质量属性。为食物添加颜色的目的是使它们具有吸引力,调整定价期间的颜色损失以提高质量,并影响购买产品。颜色被添加到食物中,以进行以下更换和恢复颜色丢失的共享处理,以增强已经存在的颜色,以最大程度地减少加工的批处理变化并为未颜色的食物染色。可以将食用颜色分组为
这项研究调查了由Tectona Grandis制成的天然染料提取物和银纳米颗粒的效果,可以防止在酸性环境中腐蚀碳钢。这些纳米颗粒在420纳米的波长下显示为深褐色,并吸收了最强的光。分析证实了官能团的存在:O-H,C = O,C = C和纳米颗粒中的N-Hb。用扫描电子显微镜检查显示纳米颗粒主要是球形或椭圆形。证实了银的存在,并使用XRD分析分析了其晶体结构。使用氮吸附技术进一步测试表明纳米颗粒是介孔的。染料和纳米颗粒都抑制了酸性溶液中低碳钢的腐蚀。较高的抑制剂浓度可提供更大的保护,以防止腐蚀。但是,这种保护在较高的温度下削弱了。抑制剂的存在提高了腐蚀所需的活化能。腐蚀过程是一个吸热过程。此外,熵变化表明在抑制期间在金属表面上的排列更加有序。研究表明,纳米颗粒是由提取物形成的。纳米颗粒在暴露于抑制剂后对钢表面的SEM/EDX研究在抑制腐蚀方面的表现优于Die提取物。
这项研究集中于常规染料敏化太阳能电池(DSSC)。这种类型的太阳能电池通常由诸如照片阳极支持,照片灵敏度(染料),电解质和反电极等组件制成。这项研究调查了来自我们环境中本地采购的光敏剂的特性。还研究了掺杂剂对叶绿素染料的吸光度光谱的影响。天然染料的光学特性表明,染料敏化的材料在可见光区域表现出强烈的620-720 nm的吸收宽带,表明具有更明显的659 nm的光子从光子中吸收红光。使用扫描电子显微镜(SEM),能量色散X射线(EDX)和X射线衍射(XRD)研究了膜的结构表征。最终通过将Tio 2光阳极与计数器电极夹在一起来制备太阳能电池。通过使用太阳能模拟器来分析制造的太阳能调用的电气性能,该太阳能模拟器的效率为0.05%。这是根据短路电流(I SC),开路电流电压(V OC)的实验值计算得出的,填充因子(FF)为0.389 V,0.389 V,0.242 V,0.242 MACM -2和0.48和0.48和0.48和0.48和0.48。关键字:DSSC,吸光度光谱,基于叶绿素的染料,扫描电子显微镜,结构表征介绍