1. 根深蒂固的煤炭经济。印度传统上依赖煤炭,国内产能约为 200 吉瓦,2020 年的产能为 7.3 亿吨。最近的政策变化可能会增加这种依赖,包括允许私营公司开采和销售煤炭、拍卖 119 个煤矿区块,以及颁布修正案,使煤炭公司更容易获得土地。2. 天然气缺乏竞争力。国内天然气生产停滞不前,进口液化天然气价格昂贵。更昂贵的天然气成本无法收回,因为终端消费者的电价受到监管,阻止使用液化天然气的发电厂将相关成本转嫁给终端消费者。3. 没有峰值奖励。印度尚未制定可能使天然气受益的峰值电力政策。这导致超过 14 吉瓦的天然气产能搁浅。4. 印度不打算使用天然气逐步淘汰煤炭。尽管存在减少排放的机会,但印度的国内政策和第一个国家自主贡献 (NDC) 都没有提到使用天然气来实现这一目的。相反,印度电力部门脱碳战略目前取决于替代煤炭和可再生能源,天然气的作用很小。根据印度电力监管机构中央电力局 (CEA) 制定的 2020 年规划文件,印度打算到 2030 年建成 450 吉瓦的可再生能源。该计划建议依靠电池存储和抽水蓄能来管理波动性,尽量减少天然气的贡献。CEA 预计,到 2030 年
● 2023 年,欧盟 13% 的液化天然气进口量来自俄罗斯。这一数字为 172.5 亿立方米,不包括转运到非欧盟成员国。 ● 俄罗斯液化天然气进口量占欧盟天然气消费量的 5%,表明欧盟对俄罗斯的依赖程度相对较低。然而,俄罗斯严重依赖欧盟市场,2023 年,欧盟是其一半液化天然气出口的目的地。 ● 2023 年,俄罗斯的亚马尔液化天然气项目出口了 260 亿立方米的液化天然气,其中 72% 运往欧洲。波尔托瓦亚和维索茨克设施的出口量(45 亿立方米)中有 86% 流向欧洲。 ● 2023 年,G7+ 国家在俄罗斯液化天然气运输方面保持主导地位。G7+ 国家拥有或投保的承运人在全球范围内运输了 93%(155 亿欧元)的俄罗斯液化天然气。 ● 实施 17 欧元/兆瓦时的全球液化天然气价格上限将使俄罗斯 2023 年的收入减少 60%,导致其液化天然气出口总收入下降 100 亿欧元。或者,如果欧盟仅实施价格上限,俄罗斯 2023 年的液化天然气出口总收入将减少 29%——损失 50 亿欧元。
要查看此改进的明确证据,我们要求PG&E提供一份清单,以显示其新模型如何改变其缓解措施的地理目标。尽管他们无法提供此信息,但PG&E描述了使用该模型的内部过程。长期计划过程依赖于主题专家(SME)来制定降低风险措施,并且在共享和讨论模型结果的风险建模团队与中小型企业之间进行了多次会议和讨论。但是,PG&E没有保留任何正式的前后记录,无法清楚地证明对建议或建造的模型影响。使用中小企业制定缓解措施与公用事业行业的标准实践一致,用于制定分配风险措施。
市场动态、监管压力、环境问题、技术进步和消费者偏好变化等因素正在推动石油和天然气 (O&G) 行业下游领域的业务转型计划。从原油加工到客户体验,下游参与者的传统方法需要在人员、流程、资产和运营效率方面进行多项升级——例如,消除原料合同中的低效率、优化物流管理、改善产品组合以应对实时需求波动、降低炼油厂生产成本、改善最终产品定价、根据实时市场波动改进规划。下游参与者在数字化转型 (DX) 的道路上进展缓慢,在过去几年中,他们比以往任何时候都更希望采用数字技术。这些公司希望通过利用数字技术来优化运营、提高效率和降低成本。这包括使用物联网 (IoT) 传感器、大数据/分析、人工智能和机器学习进行预测性维护、供应链优化和资产管理。 IDC Energy Insights 在 2024 年的最新调查深入研究了下游组织的情绪,并调查了其流程和运营创新领域的状况。这项 2024 年的调查表明,除了常规 IT 支出外,大多数下游组织都在积极投资创新数字解决方案,包括炼油厂数字孪生、数字供应链管理和燃油卡服务创新。
a. 定义价值链活动和转型指标。b. 定义排放指标和非排放指标的基础科学。c. 针对与每项活动相关的商业模式转型选项审查指标。2. 制定测量/核算和报告标准,包括每项活动的相关范围、最低目标边界以及基于排放的指标范围内可用的目标设定方法。3. 制定非排放指标的测量和报告标准。4. 审查和确定与 1.5°C 相符的相关全球情景,并根据这些情景推导出目标设定路径。5. 开发目标设定工具。6. 起草一项标准,作为排放核算和报告以及目标设定和验证指南的基础。
13) Levi Nwokafor 先生,独立石油营销商 - 成员 公用事业收费委员会执行秘书 - 成员 14) Adams Oshiomhole 先生,尼日利亚劳工大会主席 - 成员 15) Anne Okigbo 女士,世界银行代理常驻代表 - 成员 16) Chamberlain Oyibo 先生,GMD - 成员 17) 工程师 MM Ibrahim - 成员 18) Onaolapo Soleye 博士 - 成员 -< 19) 律师 Sola Adepetun - 成员 20) Nuhu Obaje 博士,地质学家 - 成员 21) Yinka Omorogbe 先生,学者 - 成员 22) Donu Kogbara 女士,记者 - 成员 v23) BPE 总干事 - 委员会协调员 24) AA Udofia 先生,BPE - 秘书
鉴于 NEO ENERGY PRODUCTION UK LIMITED 已根据《2020 年海上石油和天然气勘探、生产、卸货和储存(环境影响评估)条例》于 2024 年 3 月 4 日提出申请,且鉴于国务大臣已考虑该申请并确信该项目不太可能对环境产生重大影响;根据第 6 条规定的权力,国务大臣特此指示,该项目的同意申请无需附有环境影响评估,前提是该项目按照审查指示申请中所述并按照所附附表中规定的条件进行。
摘要:安全可靠的二氧化碳 (CO2) 储存对于减轻气候变化的一些最危险影响可能至关重要。在过去十年中,全球范围内与储层表征和大型 CO2 储存项目选址相关的活动显著增加。这些潜在的储存地点往往因其最佳的结构、岩石物理和地球化学捕获潜力而被选中。然而,也有人提出,将 CO2 储存在以高压和低温为特征的二氧化碳水合物稳定区 (GHSZ) 内的储层中(例如北极或海洋环境),可以为气体泄漏提供天然的热力学屏障。评估在 GHSZ 中商业规模长期储存 CO2 的前景需要储层规模的建模能力,以考虑与这些系统相关的独特物理和热力学。我们在大规模并行地下水流和反应迁移模拟器 PFLOTRAN 中开发了水合物流动模式及其配套的全隐式并行井模型,用于模拟向海洋 GHSZ 注入二氧化碳。我们已将这些功能应用于一系列二氧化碳注入场景,旨在揭示 GHSZ 商业规模二氧化碳封存面临的挑战和机遇。
图2:具有355 nm激光脉冲的TX-NTL-0(深蓝色)和TX-0(浅蓝色)的机械研究。a)激发后记录100 ns的瞬时吸收光谱。NTL DNA的三胞胎 - 三曲线吸收带被紫色突出显示。b)和c)在不同检测波长和时间尺度下进行时间分解的测量。d)在MECN(虚线)中TX的时间门控77 K发射,在水溶液(250 mM NaCl,10 mm Na-P I Buffer,pH 7.0)中,在水溶液缓冲液(250 mm NaCl,pH 7.0)中进行了10 ms –100 ms(蓝色)(蓝色)和4.0 s至4.3 s(紫色)(紫色)。
图1。可逆的电力到天然气系统的贡献边缘。该图说明了用于不同电价的模块化或集成式PTG系统的三种替代操作模式。批发电价可能会因在某些小时内提供给电网的盈余能量而变为负。