图 1. 2020 年纽约州裸眼井和封堵井数量 ...................................................................... 3 图 2. 纽约州每年完工的石油和天然气井数量 .............................................................. 4 图 3. 2020 年产气井的年龄分布 ...................................................................................... 5 图 4. 纽约州的石油和天然气产量 ...................................................................................... 6 图 5. 2020 年累计石油和天然气总产量百分比与纽约州油井数量之间的关系 ............................................................................. 7 图 6. 2020 年纽约州石油和天然气井位置和产量 ............................................................................. 8 图 7. 纽约州及周边各州石油和天然气井、天然气加工厂、天然气管道、天然气地下储存和页岩气田的位置 ................................................................................................................ 9 图 8. 纽约州天然气公用事业服务区 ............................................................................................. 10 图 9. 石油和天然气系统图 10. 确定天然气系统逸散性 CH 4 排放估算方法的决策树 ......................................................................................................................27 图 11. 确定石油系统逸散性 CH 4 排放估算方法的决策树 ......................................................................................................................28 图 12. 1990 年至 2020 年纽约州的 CH 4 总排放量(AR5 GWP 20) .............................................................................................................图 16. 2020 年纽约州下游、中游和上游 CH4 排放量占总排放量的百分比 ...................................................................................................................... 102 图 17. 2020 年纽约州按来源类别并按上游、中游和下游阶段分组的 CH4 排放量 (AR5 GWP 20) ............................................................................................. 103 图 18. 前五大排放源类别中 CH4 排放量的百分比 ............................................................................................. 104 图 19. 2020 年纽约州各县 CH4 排放量地图 (AR5 GWP 20) ............................................................................................. 113 图 20. 2020 年纽约州各县 CH4 排放量 (AR5 GWP 20) ............................................................................................. 114帝国大厦发展公司确定的纽约州经济区域.... 121 图 22. 2020 年纽约州各经济区域的 CH 4 排放量(AR5 GWP 20)...... 122 图 23.使用 AR5 GWP 20 甲烷换算因子,比较 1990 年和 2020 年纽约州源类别甲烷排放量 ...................................................................................................... 124 图 24. (EPA 2022) 中的图 ES-11 的复制,显示能源和其他部门排放的时间序列趋势 ................................................................................................................ 125 图 25. 包括最佳估计值和上限和下限的总排放量 (AR5 GWP 20 ) ............................................................................................................................. 131 图 26. 包括上限和下限的上游排放量 (AR5 GWP 20 ) ............................................................................................................................. 131 图 27. 包括上限和下限的中游排放量 (AR5 GWP 20 ) ............................................................................................................. 131 图 28. 包括上限和下限的下游排放量 (AR5 GWP 20 ) ............................................................................................................. 132
此路线图概述了在加拿大商业运营中推进超过超过地热力的计划,即深度大于5公里的地热系统。预定的决策者,地热开发商,技术公司和投资者都确定了诺言的机会,并确定了优先权或技术的优先权,政治Y,以及plotic y,以及监管; Highlig HTS关键差距;并为公共和私人投资如何支持迅速缩小这些差距的努力提供指导。加拿大在地下资源开发方面的世界一流的专业知识和人力资本(特别是在石油和天然气井的设计,钻井和完成中)是相对不及格的,这是一个竞争性的竞争力。沿途深度较浅的MAL资源。此路线图提供了有关如何加速研发和测试,协调利益相关者,填补政策和监管差距以及降低行业的建议。
拜登总统的重建更好的议程将加速许多减少甲烷排放的工作。投资议程将使内政部能够启动一项激进的计划,以填补数十万个孤儿石油和天然气井,包括许多仍在排气的甲烷,在全国范围内雇用工会工人。Build Back更好将扩大当前废弃的矿土计划,资助历史补救工作,这将导致甲烷排放巨大的减少,从目前泄漏的,废弃的煤矿减少。这个规模的计划还将吸引成千上万的熟练工人,尤其是在全国能源社区中。最后,投资议程将涡轮增压现有的USDA努力,为农民和牧场主提供更多资源,以利用他们管理的土地和设施减少排放的机会。
从其两个生产领域(都具有现有基础设施的两个生产场地),HPOC可以在新墨西哥州西北部的高度干旱且经济困扰的农村地区提供近2英亩英尺/天的商业发展。由于其生产的水的TDS相对较低(10,000 TD),HPOC可以通过常规的反渗透治疗水,以满足所有美国EPA主要和次级饮用水标准以及WQCC/EPA排放标准。目前,这些田地产生约1%油和99%水的流体流;分离后的水被重新注入储层中,并有效地作为资源丢失。重新利用现有的石油和天然气井库存和支持基础设施将允许对这种水资源的经济获取,而该水资源的深度为5500英尺,是独立的水井开发计划的不经济性。
每名员工NAIC的年工资211石油和天然气提取1,796 5.37 $ 240,977,820 $ 131,168 NAIC 213111钻探油和天然气井1,962 14.56 $ 245,852,375 $81,141 NAICS 2212 Natural gas Distribution 646 2.50 $84,368,390 $130,609 NAICS 23712 Oil and gas pipeline construction 3,028 7.95 $181,019,061 $59,786 NAICS 32411 Petroleum refineries 629 4.13 $73,440,622 $119,919 NAICS 333132石油和天然气场机械和装备MFG。332 2.52 $ 20,774,542 $ 62,590 NAICS 4247石油商人批发商341 1.49 $ 25,473,803 $ 74,786 NAICS 447 GALOLINE 447 GALOLINE Stations 2,909 1.40 $ 73,367,367,367,367,357,357,219 SICS 45,219 SICS 45,219 SICS 440 SICS SICS 440 NA SICS 440 SICS SICSS 440. $ 3,419,433 $ 52,062 NAICS 486管道运输275 2.40 $ 30,142,929 $ 109,508总计,石油和天然气行业16,193 $ 1,309,588,669 $ 80,874总计351,475 $ 17,123,2123,2123,214,123,214,123,214,123,214,123,214,123,23,23,23,23,23,23,2123,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,2 r
简介 传统上,高温电子产品的主要市场是井下石油和天然气行业。然而,航空电子、汽车和许多其他行业的应用也具有相同的关键要求:在恶劣的操作条件下(包括高湿度和多尘)的可靠性,以及承受冲击和振动的能力。 电阻器和电容器在任何电子设备和系统中无处不在。缺乏可靠的高温、高值电容器几乎肯定会限制这些新应用的增长。目前市场上大多数电容器技术,例如铝电解电容器或薄膜电容器,最高温度范围限制在 125ºC - 150ºC 甚至更低。为了获得更高的温度额定值,使用陶瓷和钽电容器。 高温应用 井下 在井下电子设备中,高温通常被归类为 150ºC 及以上。过去,150ºC 至 175ºC 的温度是钻井作业的典型最高额定值。更深的钻井和勘探不利位置的需求大大增加了这种情况,如今的井温可能超过 200ºC,压力超过 25kpsi [1]。1. MWD - 随钻测量 (Sperry) – MWD 工具直接安装在钻头 (钻头) 的背面。典型的深井温度为 210ºC 及以上,在非常深的天然气井中,潜在温度可能升至 25
摘要 地热储层描述、现场施工和储层作业是技术密集型活动,对地热资源发电成本有重大影响。许多地热技术,如井下工具和钻井设备,在材料、设计和制造方面都有不同寻常的考虑,这是由恶劣的地热环境和在钻孔中部署所需的极端纵横比决定的。地热应用面临的另一个挑战是支持该行业所需的工具产量低。尽管美国每年钻探和完成数以万计的石油和天然气井,但通常只有数十口地热井被钻探和完成。如果通常用于石油和天然气应用的工具不能直接用于地热,那么使该工具适用于地热的成本往往高得令人望而却步。因此,与石油和天然气相比,地热行业可用的技术库存要少得多,因此现场实践的效率和复杂程度也会受到影响。近年来,许多先进的制造方法(例如增材制造)因其能够快速制作复杂零件的原型而获得了越来越多的研发和商业关注。增材制造尤其为地热行业提供了增加可用技术的机会,既可以降低与复杂组件相关的制造成本,也可以经济地生产通常需要专用工具的小批量零件。增材制造的其他潜在优势包括增加设计自由度以制造无法以传统方式制造的高性能零件,能够将组件集成到组件中而无需连接操作,并且能够在铸造模具等需要大量前期工具成本的情况下经济地制造设计变体。我们最近完成了一项研究,该研究调查了技术需求、代表性用例、可制造性以及用于比较地热应用的传统和增材制造方法的技术经济框架。本文将概述这项最新努力,描述评估的不同要素,并总结与使用增材制造进行地热技术应用的可行性以及潜在利益和影响相关的关键要点。
A.海兰秘书,您的部门采取了什么步骤来确保恢复对科学,医学和国家安全至关重要的稳定氦气供应?回应:根据美国地质调查局(USGS),联邦氦气系统(FHS)的约为2021.1在美国生产的氦气总约7.8%,USGS报告显示,美国是氦气的净出口国,在2021年出口了五次。虽然外国供应中断影响全球氦气价格,但鉴于当前作为氦气净出口国的美国地位,这些干扰对美国国家安全或经济利益构成直接威胁。此外,FHS的联邦氦气供应占美国生产的氦气总氦气的一小部分。该部门预计氦气的供应不会显着波动。此外,该部已执行第1109条:116-9号公共法(也称为“ Dingell Act”),该法案修改了《矿产租赁法》,以允许从联邦石油和天然气井中从天然气中提取氦气,以维持租赁,就像提取的氦气是石油和天然气一样。这有助于激励公司从联邦井中生产氦气,在那里天然气生产本身可能不足以维持租赁。最后,该部仍致力于满足2013年《氦气管理法》的要求(美国法典50年5月167a-Q; HSA)处置FHS。该法案旨在以竞争性市场方式完成联邦氦储备的私有化,以确保氦气市场稳定。在准备FHS的销售和运输并继续交付氦气时,土地管理局(BLM)要求FHS的购买者承担当前财政部的22-27氦储存合同的交付要求。问题2:过去几个财政年度,该部门管理野马和布罗斯的管理预算显着增加,其中包括2022财政年度增长18%,并要求今年提高12%的要求。我知道,这些野马牛群的人道管理仍然是一个问题,这些牛群的大小影响了当地的景观和马匹本身的健康。
hibit降低了渗透性,因此需要建立有效的地热系统(EGS)以利用深度地热能。在EGS中,用于液压压裂用于储层刺激,以人为增强的地热储层具有较高的渗透性。当前的深地热储量刺激技术主要是从石油和天然气部门采用的液压压裂过程中借来的,对刺激性能,地震风险控制和有效的地热储层的热萃取产生了限制。这项研究总结了深度地热能的液压压裂的特征:(1)剪切机理主导着断裂诱导的损伤。(2)冷水注入诱导的差分温度所产生的拉伸应力鼓励裂缝进一步传播。(3)连续的水注入使孔压力保持高于地层压力,从而为裂缝保持良好的条件保持开放。因此,EGS中的液压压裂不需要支撑剂。这与石油和天然气井的液压破裂完全不同,这在很大程度上依赖于支撑剂。此外,这项研究系统地分析了EGS的四个主要挑战:低发电能力,注入和生产井之间的连通性差,诱发破坏性地震的风险以及在没有补贴的情况下获得利润的困难。这项研究通过数值模拟研究了Regs的优势。根据创新的破裂和能量回收的各个方面,本研究提出了一种与能源存储相结合的创新增强的开发模式,称为再生工程的地热系统(REGS)。结果表明,与水平井以及不等的间距,区域和注射水的体积的多阶段分裂可以增强注入和生产井之间的连通性。破裂过程在Regs中进行了优化。具体来说,采用了多阶段裂纹。在每个阶段,早期的水注射率迅速增加,并在晚期逐渐下降。这可以防止在井眼压力下突然波动,从而控制诱发地震的幅度并防止破坏性地震。Regs整合了可再生能源的大规模地下存储,实现了多能补充并增强了Regs项目的生产寿命和盈利能力。这项研究的最终成员将为试点项目和标准化促进技术的标准化奠定基础,用于融合的热量和发电,与储能集成在一起,用于中国深地热能。
简介 传统上,高温电子产品的主要市场是井下石油和天然气工业。然而,航空电子、汽车和许多其他行业的应用也具有相同的关键要求:在恶劣的操作条件下(包括高湿度和多尘)的可靠性,以及承受冲击和振动的能力。 电阻器和电容器在任何电子设备和系统中都是无处不在的。缺乏可靠的高温、高值电容器几乎肯定会限制这些新应用的增长。目前市场上大多数电容器技术,例如铝电解电容器或薄膜电容器,最高温度范围限制在 125ºC - 150ºC 甚至更低。为了获得更高的温度额定值,使用陶瓷和钽电容器。 高温应用 井下 在井下电子设备中,高温通常被归类为 150ºC 及以上。过去,150ºC 至 175ºC 的温度是钻井作业的典型最高额定值。随着钻井深度和勘探条件恶劣地区的需要,这种情况显著增加。如今,油井的温度可能超过 200ºC,压力超过 25kpsi [1]。1. MWD——随钻测量(Sperry)——MWD 工具直接安装在钻头(钻头)后面。典型的深井温度为 210ºC 及以上,在非常深的天然气井中,潜在温度可能升高到 250ºC。除了承受极端高温外,此应用中使用的电子设备还必须能够应对 15G 的持续振动和 100 到 2000G 的极端冲击 [2]。2. 测井工具/有线测量——设备连接到电线并放入现有油井中进行数据收集。由高温电池供电的工具将信息存储在内部存储器中,而其他类型的设备则通过导电电缆提供在线测量。典型的最高工作温度为 225ºC,在不到 30 分钟的时间内便可达到从环境温度上升到该温度的温升。 3. 完井工具、生产监测 – 泵和阀门控制工具由永久安装的设备操作。一般而言,这些系统监测压力、流量、密度和温度。由于它们的设计使用寿命长,因此必须使用可靠性和性能最高的组件。此应用对冲击和振动的要求非常低,温度范围在 105ºC 至 175ºC 之间。 航空电子设备 工作温度可能因电子设备所处位置的不同而有很大差异。例如,靠近发动机本身的发动机控制系统的环境温度范围为 – 55ºC 至 200ºC。随着更多电动飞机的出现,电力电子设备将取代现有的液压系统。用于燃油泵、电机控制、电动制动和着陆系统将需要能够在较长的使用寿命内承受大量热循环的高温电容器。汽车 汽车电子是汽车行业中一个快速且持续增长的领域。高温设备正在取代机械或液压系统。温度条件可能有所不同,最苛刻的位置是发动机、变速箱和制动系统。发动机和变速箱的温度通常低于 200ºC,但一些安装在车轮上的部件可能达到 250ºC。