语言模型在基因组学中的新应用有望对该领域产生重大影响。Megadna模型是创建合成病毒基因组的第一个公开可用的一代模型。评估Megadna概括病毒的非随机基因组组成以及是否可以通过算法检测到合成基因组,4,969个天然噬菌体基因组和1,002 de Novo合成细菌噬菌体的组成指标比较了。变压器生成的序列已通过Genomad分类为变化但现实的基因组长度,而58%的序列分类为病毒。然而,与天然的Bacte-riophage基因组相比,通过秩-SUM测试和原理分析分析,这些序列在各种综合度量中呈现一致的差异。一个简单的神经网络训练,可在全球组成指标上检测变压器生成的序列,其中位灵敏度为93.0%,特异性景观为97.9%(n = 12个独立模型)。总体而言,这些恢复表明,巨型群岛尚未具有逼真的组成偏见,并且基因组组成是检测该模型产生的序列的可靠方法。虽然结果是Megadna模型的特异性,但此处描述的评估框架可以应用于基因组序列的任何生成模型。
蜂蜜蜜蜂是探测宿主的强大模型系统 - 近距离菌群相互作用,也是自然生态系统和农业的重要传粉媒介物种。虽然细菌生物传感器可以对宿主与其相关的菌群之间发生的复杂相互作用提供批判性的见解,但缺乏非侵入性的肠道含量进行采样的方法,以及对工程师Symbionts的有限遗传工具,到目前为止,它们在蜜蜂中的发展促成了它们的发展。在这里,我们构建了一个多功能分子工具套件,以基因修改共生体,并在蜜蜂中首次报告了一种用于采样其粪便的技术。我们将天然的蜜蜂肠道细菌snodgrassella alvi作为IPTG的生物传感器,其工程细胞通过表达荧光蛋白的表达来稳定地定居于蜜蜂蜜蜂的肠道,并以剂量依赖性的方式暴露于骨骼。我们表明可以在肠道组织中测量荧光读数或在粪便中无创测量。这些工具和技术将使工程细菌的快速建立能够回答宿主 - 近距离微生物群研究中的基本问题。
摘要:安全可靠的二氧化碳 (CO2) 储存对于减轻气候变化的一些最危险影响可能至关重要。在过去十年中,全球范围内与储层表征和大型 CO2 储存项目选址相关的活动显著增加。这些潜在的储存地点往往因其最佳的结构、岩石物理和地球化学捕获潜力而被选中。然而,也有人提出,将 CO2 储存在以高压和低温为特征的二氧化碳水合物稳定区 (GHSZ) 内的储层中(例如北极或海洋环境),可以为气体泄漏提供天然的热力学屏障。评估在 GHSZ 中商业规模长期储存 CO2 的前景需要储层规模的建模能力,以考虑与这些系统相关的独特物理和热力学。我们在大规模并行地下水流和反应迁移模拟器 PFLOTRAN 中开发了水合物流动模式及其配套的全隐式并行井模型,用于模拟向海洋 GHSZ 注入二氧化碳。我们已将这些功能应用于一系列二氧化碳注入场景,旨在揭示 GHSZ 商业规模二氧化碳封存面临的挑战和机遇。
最近,设计了采用Staudinger连接进行DNA结合的方法。表明,通过合适的接头系统将叠氮化物功能结合可以使染料与单链DNA的5 9端结合。22 Rajski等。使用Staudinger连接将DNA与随后的Cu(i)诱导的链分裂结合DNA。23在这里,我们报告了一种新型叠氮化物修饰的三磷酸核苷的构建块的开发,该块很容易通过DNA聚合酶将DNA掺入DNA中。可以通过Staudinger连接将所得的双链叠氮化物修饰的DNA与改良的磷酸化。在方案1B中描述了通过使用DNA聚合酶进行随后的Staudinger连接的DNA聚合酶对DNA位点特异性的策略。第一步由DNA聚合酶反应组成,其中一种天然的三磷酸核苷(DNTP)被包含叠氮化物功能的修饰类似物取代。显然,此步骤的成功取决于DNA聚合酶接受改性核苷酸的能力。叠氮化物修饰的双链DNA反过来应用作具有适当功能化磷酸的Staudinger连接的底物。
精准医疗结合了分子生物学、化学、材料科学和其他领域的多个跨学科领域,以产生更准确的疾病治疗方法。测序、细胞区室和治疗靶点表征方面的进展,以及制药行业的进步,导致了高级研究和临床试验数量的增加。许多临床试验都涉及用于治疗各种疾病(如代谢、免疫和激素紊乱以及癌症)的蛋白质和肽类药物。[1] 制药市场上大约 10% 的药物是肽类或蛋白质药物,包括 DrugBank 中的 485 条肽类药物 [2] 和 THPdb 中 239 条 FDA 批准的肽类药物。[1] 肽类和蛋白质药物因其生物相容性、通过氨基酸序列变化设计的灵活性以及独特的分子拓扑结构,在从传感和催化到治疗等各种应用中具有巨大潜力。 [3] 更具体地说,它们表现出独特的属性,例如氢键潜力、氨基酸固有的手性、多态性 [4] 和源自肽键的构象刚性。[3] 此外,肽可以是天然的也可以是合成的,例子包括重组激素、抗菌肽、抗体和重组酶,[5] 此外,还可以加入非天然氨基酸来进一步实现化学多样化。[6]
最近的研究报道了甘露糖(一种天然的六碳单糖)在癌症治疗中具有直接的抗肿瘤作用。在此,我们利用癌细胞系、动物模型、类器官和多组学和细胞实验等实验技术来研究甘露糖对 NSCLC 生长和炎症微环境的调控作用。我们证明甘露糖可以抑制 NSCLC 组织中的癌细胞生长、炎症细胞浸润和炎症细胞因子表达,并在体内和体外增强免疫检查点抑制剂的抗肿瘤功效。口服甘露糖增加了肠道菌群中益生菌的比例,以及 NSCLC 小鼠血液和粪便中抗炎和抗肿瘤代谢物的丰度。在 NSCLC 细胞中,甘露糖通过直接靶向 OGT 抑制 hnRNP R 的 O-GlcNAc 糖基化,从而降低 JUN mRNA 的稳定性以及随后的 NSCLC 细胞 IL-8 转录,而 hnRNP R 以 O-GlcNAc 糖基化依赖的方式结合并稳定 JUN mRNA。总之,我们的研究表明,甘露糖可以通过抑制肿瘤生长和炎症微环境来抑制 NSCLC,并可作为一种有前途的辅助药物。
覆盖的储罐形成天然的外壳。随着覆盖物的吸收增加,将向下调整结构店的百分比。实施自然地壳覆盖的排放因子,导致整个时间表中农业部门的N2O排放量的增加很小。•更新的建模假设,用于估算有机肥料的土地分配以解释监管变化的排放。在威尔士,在2021年引入了一项新政策,在该政策中,必须在24小时内将有机肥料(泥浆,消化料和家禽粪便)应用于裸露的土壤或茬,除非使用低排放的泥浆传播设备(Lesse)13。在苏格兰,在2023年提出了一项新政策,其中应使用Lesse 14应用承包商或大型牛和养猪场应用的所有液体消化物以及泥浆。此外,在收到其他活动数据的情况下,已经修订了北爱尔兰的Lisse吸收的假设。•更新的建模假设,用于估算地面储罐中泥浆存储的排放,以说明北爱尔兰的监管变化,要求所有新的泥浆商店覆盖15。相应地,已经修改了覆盖物作为缓解措施的假设。
摘要 天然的抗弯曲装甲结合了坚硬的、离散的鳞片,附着在软组织上,提供独特的表面硬度(用于保护)和柔韧性(用于不受阻碍的运动)组合。鳞片状皮肤现在是一种鼓舞人心的合成防护材料,它具有吸引人的特性,但在柔韧性和防护性之间仍然存在有限的权衡。特别是,弯曲鳞片状皮肤,使鳞片在内弧面,会卡住鳞片并使系统显著变硬,这在手套等系统中是不可取的,因为手套的鳞片必须覆盖手掌侧。大自然似乎已经通过创造可以形成皱纹和褶皱的鳞片状皮肤解决了这个问题,这是一种非常有效的机制,可以适应大的弯曲变形并保持弯曲柔顺性。这项研究的灵感来自这些观察:我们探索了软膜上的刚性鳞片如何以受控的方式弯曲和折叠。我们使用离散元建模和实验相结合的方式研究了不同屈曲模式的屈曲能量和稳定性。具体来说,我们展示了鳞片如何诱导稳定的 II 型屈曲,这对于皱纹的形成是必需的,并且可以提高仿生保护元件的整体弯曲柔顺性和灵活性。
定向进化(DE)是一种蛋白质工程技术,涉及诱变和筛选以搜索优化给定特性的序列(例如将有效绑定到指定目标)。不幸的是,潜在的优化问题不确定,因此引入的突变以提高指定特性可能是以未定的,但重要的属性为代价的(例如,亚细胞定位)。我们试图通过将折叠的正则化因子纳入优化问题来解决这个问题。正则化因子偏向于类似于蛋白质所属折叠族的序列的设计的搜索。我们将方法应用于具有与IgG-FC的官能测量值的大型蛋白质GB1突变体库。我们的结果表明,正则化优化问题会产生更多类似天然的GB1序列,而结合效率仅略有下降。特别是,在GB1折叠族的生成模型下,我们的设计的对数比没有正则化的生成模型高41-45%,而结合效果仅下降了7%。因此,我们的方法能够在竞争性状之间进行交易。此外,我们证明了我们的主动学习驱动方法可将湿lab负担降低,以识别最佳的GB1设计,相对于Arnold Lab在同一数据上的最新结果。
Telekinesis在科幻文学和电影中通常描绘,是一种超级力量,用户可以控制和操纵物理互动中没有物体。在现实世界中,增强人与机器人相互作用需要与机器人臂合成人类直觉过程。本文介绍了一个机器人的远程操作系统,该系统实现了电信作业的本质,将增强现实(AR)的深刻能力与机器人手臂的操作相结合。利用AR,提出的方法为操作员提供了视觉反馈,从而促进了一定程度的控制,超过了自然接口的能力。通过使用AR驱动的视觉识别,该系统在虚拟环境中实现了操作,随后通过机器人臂在现实世界中实现。通过多个实验,我们发现该系统在远程运动操作中的错误幅度很小,满足了远程操作的需求。此外,我们的系统可以在现实世界中的对象上运行。这些实验强调了遥控系统通过AR和机器人臂的整合来帮助人类完成更广泛的任务的能力,从而提供了一种天然的人类 - 机器人相互作用方法。