被子植物既是地球上占主导地位的植物群,又是农业的基石,其丰富的多样性与独特的进化历史密不可分。本文,我们探索被子植物基因组组织与植物多样性之间的相互作用,借助从遗传连锁图谱到基因调控分析等基因组学方法。植物遗传硬件的共性使得比较基因组学成为可能,它提供了被子植物进化的广阔图景,并揭示了一般过程和特定因素对植物多样性的贡献。我们认为,植物基因组的硬件(无论是内容还是动态)都是由选择决定的,因为植物和动物(如玉米和人类)在基因调控方面存在相当大的差异,而这两个生物的基因组大小和基因数量相当。它们独特的基因组内容和动态可能在一定程度上反映了植物的不确定发展,这对基因调控的要求与动物截然不同。植物基因组的反复多倍化和单个基因的增殖,以及广泛的重排和差异保留,为选择形态和/或生理变异提供了丰富的原材料,这些变异赋予了特定生态位的适应性,无论是天然的还是人工的。这些发现表明,可用于增加植物生物学知识和修改选定植物以更好地满足人类需求的新兴信息正在蓬勃发展。
气候变化将在未来几十年内从根本上重塑地球上的生命。因此,了解物种应对温度升高的程度至关重要。表型可塑性是生物体改变其基因组对环境所编码的形态和功能性状的能力。我在这里表明,可塑性不仅弥漫在天然的系统中,还可以模仿生物生物的发育过程,例如自我复制和不断发展的计算机程序 - 数字生物。具体来说,环境可以修改从数字有机体的基因组执行的指令顺序(即其转录组),这会导致其表型的变化(即数字有机体执行布尔逻辑操作的能力)。这种基于遗传的可塑性途径的适应性成本可以使生物体的生存能力和发电时间:转录组(较高的健身成本)越长,环境改变遗传执行流量控制的机会就越大,并且基因组对编码新表型的可能性越高。通过研究数字有机体的基因组和环境的影响在多大程度上,我在自然和人工化的系统之间建立了平行性,介绍了自然选择如何从整体环境控制到总基因组控制到总基因组控制的任何地方,从而使人们不仅可以更轻松地设计生物学的生物学,而且还要降低了对现实的人工体系的影响。
Milk-to-Drop 晒后身体喷雾含有 98% 的天然成分,让您的肌肤感到清爽舒缓,是晒伤皮肤的理想选择。使用这种可喷雾的乳液,它会在涂抹过程中转变成水滴,为您带来独特的体验。这种温和、轻盈的稀薄乳液通过极低的助乳化剂使用量来稳定,温和度极佳,与 PemuPur™* START 聚合物相结合,这种天然衍生的聚合物乳化剂可提供轻盈的感觉和快速破霜效果。AlgaPūr™* HSHO 藻油是一种生物技术油,由微藻的神奇力量制成,可将糖转化为 100% 天然的甘油三酯,这是一种可持续的发酵过程,对环境的影响非常小。AlgaPūr™* HSHO 藻油可提供保湿,使用后感觉柔软丝滑。 Schercemol™* CO 酯和 Schercemol™* 1818 酯均为天然轻质和中质酯,可增强肌肤的轻盈感和奢华柔软度。通过可持续 Phenobio™* 亚临界水技术获得的植物成分 Actismart™* SW 黄瓜和 Actismart™* SW 洋甘菊,可能有助于以自然的方式缓解皮肤状况。
RNA 分子在多种生物过程中起着至关重要的作用。深入了解它们的功能可以大大提高我们对生命机制的认识,并推动治疗各种疾病的药物的开发。最近,RNA 基础模型的进展为 RNA 工程带来了新方法,但现有方法在生成具有特定功能的新序列方面存在不足。在这里,我们介绍了 RNAGenesis,这是一个通过潜在扩散结合 RNA 序列理解和从头设计的基础模型。使用类似 Bert 的 Transformer 编码器(具有混合 N-Gram 标记化用于编码)、查询 Transformer(用于潜在空间压缩)和自回归解码器(用于序列生成),RNAGenesis 从学习到的表示中重建 RNA 序列。具体到生成,训练基于分数的去噪扩散模型来捕获 RNA 序列的潜在分布。 RNAGenesis 在 RNA 序列理解方面的表现优于当前方法,在 13 个基准测试中的 9 个中取得了最佳结果(尤其是在 RNA 结构预测方面),并且在设计类似天然的适体和具有理想特性的优化 CRISPR sgRNA 方面表现出色。我们的工作使 RNAGenesis 成为基于 RNA 的治疗和生物技术的强大工具。
腌制是一种数百年历史的保存技术,它将新鲜蔬菜或水果变成浓郁,美味的美食。看似简单的过程背后是令人着迷的发酵科学。在本文中,我们将深入研究腌制的复杂性,探讨推动发酵过程的科学原理。从微生物的作用到发生的化学反应,我们将发现腌制背后的科学,并更深入地了解这种古老的方法如何将普通成分转化为烹饪宝藏。发酵:腌制的腌制的关键在于发酵过程。发酵是一种代谢过程,微生物(例如细菌或酵母)将糖转化为酸,气体或酒精。在腌制中,乳酸发酵是主要机制。这个过程不仅赋予了特征性的浓郁味道,而且还具有天然的防腐剂,从而延长了腌制产品的保质期。微生物的作用 - 微生物在发酵过程中起着至关重要的作用。乳酸细菌,例如乳酸杆菌,是涉及的主要微生物。这些细菌自然出现在水果和蔬菜的表面上,或者可以通过起动培养物引入。在发酵过程中,这些细菌将存在于农产品中的糖转化为乳酸,从而降低盐水的pH并创造酸性环境[1]。
无论是合成的还是天然的,微纤维在环境中的数量都急剧增加,成为海洋中最常见的颗粒类型,并使水生生物面临多种负面影响。采用结合形态学(扫描电子显微镜 - SEM)和分子分类学(高通量 DNA 测序 - HTS)的方法,我们研究了在地中海西北部收集的漂浮微纤维 (MF) 中的细菌组成。纤维表面 100 μ m 2 中细菌的平均数量为 8 ± 5.9 个细胞;通过将其外推到整根纤维,这代表每根纤维有 2663 ± 1981 个细菌。附着的细菌群落以 Alteromonadales、Rhodobacterales 和 Vibrionales 为主,包括潜在的人类/动物病原体副溶血性弧菌。这项研究揭示了 MF 上细菌定植率很高,并表明这些颗粒可以寄生许多细菌物种,包括假定的病原体。即使我们无法仅根据分类学确认其致病性,这也是首次描述这种附着在地中海 MF 上的致病弧菌。识别 MF 定植菌对于评估健康风险很有价值,因为它们的存在可能对沐浴和海鲜消费构成威胁。考虑到 MF 可以作为整个海洋中潜在致病微生物和其他污染物的载体,这种污染可能产生生态和经济后果。
计划执行办公室指挥、控制、通信、计算机和情报 (PEO C4I) 和太空系统 (PEO Space Systems) 正在共同努力,实现美国舰队部队的舰队设计和分布式海上作战。具体来说,他们专注于创建一个平台/系统无关的环境,从而实现将传感器和数据连接到武器的复杂指挥和控制网络。这项工作涉及从传统的对单个系统或程序的关注转变为对能力的关注。这一共同的旅程旨在更好地使舰队具有竞争力、威慑力和胜利,其起源是有机的——两个指挥部共享同一个老板,海军少将 Carl “Chebs” Chebi,他是两个组织的项目执行官。他们还共享其他资源,他们的技术重点使他们成为天然的队友。“两个 PEO 都在努力加速交付所需的 C4I 或太空系统能力,这些能力价格合理、集成、可互操作且网络安全,”Chebi 说。 “我们正在从以项目为中心的能力转向以能力为中心的系统集成。我们将继续在项目层面执行,但我们将在系统之系统 (SoS) 层面进行管理。展望未来,我们必须定义能力组合。然后我们实施一种方法来分析这些组合,记录 SoS 架构并确定差距。最后一步,我们将整合我们的能力组合
摘要:基于聚合物的除草剂纳米载体表现出了提高除草剂功效和环境安全的潜力。这项研究旨在开发,表征和评估对草甘膦基于天然的聚合物纳米系统的靶向和非目标生物的毒性。聚合物(例如壳聚糖(CS),Zein(Zn)和木质素(LG))用于合成中。纳米系统的大小,表面电荷,多分散指数,封装效率,对杂草物种的毒性(Amaranthus hybridus,ipomoea grandifolia和eleusine indica)以及综述(RR)Ready(RR)作物,土壤呼吸和土壤呼吸和酶活性。与商业草甘膦(40%)相比,最稳定的系统是Zn与交联的poloxamer(PL)的组合,杂草控制功效较高(90-96%)。对I. Grandifolia和E. Indica没有观察到没有改善。在RR作物,土壤呼吸或土壤酶中未观察到草甘膦毒性,表明在这些模型中没有纳米成型的毒性作用。Zn- PL系统可以是使用环保材料的草甘膦递送的有希望的替代方法,并提高了农业杂草控制的效率。关键字:纳米糖剂,锌,木质素,杂草控制,可持续性
摘要 胰腺导管腺癌 (PDAC) 是最难治愈的恶性肿瘤之一,5 年相对生存率仅为 6%。其治疗效果不佳是由于化疗耐药和独特的病理生理,即丰富的炎性细胞因子和细胞外基质 (ECM) 异常增生。基于骨髓间充质干细胞 (BM-MSCs) 能够影响 PDAC 的肿瘤微环境和恶性生长的理论,我们利用来自 BM-MSCs 的外泌体 (Exos) 作为 PDAC 归巢载体,以超越病理 ECM 的限制并增加治疗药物在肿瘤部位的积累。为了克服 PDAC 的化疗耐药性,在纯化的 Exos 上负载紫杉醇 (PTX) 和吉西他滨代谢的中间产物吉西他滨单磷酸盐 (GEMP)。本研究在肿瘤球体和PDAC原位模型上,Exo 递送平台表现出了归巢和穿透能力的优势。同时,还发现其在体内和体外均具有良好的抗肿瘤效果,且全身毒性相对较小。我们构建的 Exo 平台加载了 GEMP 和 PTX,得益于天然的 PDAC 选择性,具有出色的穿透性、抗基质性和克服化学耐药性的综合功能(图 1)。值得期待的是,Exo 平台可能为 PDAC 的靶向治疗提供一种有前途的方法。
n 在医疗保健领域,这种整体方法需要联合研究人员、医生、药剂师和其他提供者为患者提供最佳服务。 n EMSOP 在促进这种跨专业护理和研究方法方面处于领先地位。在以下页面中,您将阅读到:我们与罗格斯大学梅森格罗斯艺术学院共同开发的独特课程,该课程训练学生扮演模拟患者;我们的 PharmD/MD 计划现已庆祝成立 10 周年,该计划正在医学界播下药学视角的种子;以及我们与罗格斯癌症研究所的关系,该研究所为研究所提供基础研究的重要发现,并使我们的教职员工能够在人体临床试验中测试新化合物。 n 同样,这里没有什么神秘之处。EMSOP 已存在一个多世纪,它也建立了一些联系。更广泛地说,药学领域是一个天然的召集人,因为药剂师就是靠人脉。他们知道药物的作用原理,而且正如疫情所表明的那样,他们越来越多地成为患者护理的第一道防线和分诊点。n 这个故事的寓意是:我们所有从事医疗保健的人都明白与患者交谈的重要性。在我们开展工作时,让我们也记得互相交谈。