印后版本。最终版本在此发布:Mejri, M.、Toubal, L.、Cuillière, J. C. 和 François, V. (2017)。短天然纤维增强塑料与尼龙的疲劳寿命和残余强度。复合材料 B 部分:工程(第 110 卷,第 429-441 页)。 https://doi.org/10.1016/j.compositesb.2016.11.036 CC BY-NC-ND 4.0
近年来,通过应用机器学习 (ML) 重新定义了具有独特特性的天然纤维复合材料 (NFC) 中天然纤维增强材料的优化设计过程。这项工作阐明了 ML 算法和进化计算技术的类型和应用的功能,特别关注它们在 NFC 领域的适用性。此外,解决方案方法和相关数据库被用于产品开发过程的各个阶段,从原材料选择到 NFC 的最终用途应用。详细介绍了 ML 在 NFC 行业的优势和局限性,以及材料科学中的相关挑战,例如 ML 模型的可解释性。最后,讨论了 ML 的未来方向和新兴趋势。DOI:10.15376/biores.20.1.Palanisamy 关键词:机器学习;天然纤维复合材料;深度学习;堆叠序列联系信息:a:机械工程系,PTR 工程与技术学院,Austinpatti,马杜赖,625008,泰米尔纳德邦,印度;b:木材力学与技术系,伊斯坦布尔大学林业学院,Cerrahpasa,Bahcekoy,Sariyer,34473,伊斯坦布尔,土耳其;c:电子与通信工程系 Koneru Lakshmaiah 教育基金会,Vaddeswaram,贡土尔区 - 522 302 安得拉邦,印度;d:科学与技术学院,Università di Camerino,62032 Camerino,意大利:e:工程与管理系,工程学院,苏丹王子大学,利雅得,11586,沙特阿拉伯;f:机械设计与生产工程系,Zagazig 大学工程学院,Zagazig 44519,Sharkia,埃及; * 通讯作者:sivaresearch948@gmail.com; tkhan@psu.edu.sa 引言 天然纤维复合材料 (NFC) 概述及其在材料科学中的意义
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
生物复合材料面临的巨大挑战之一是提高弯曲强度和冲击强度。因此,本研究的重点是优化和参数研究天然混合纤维增强纳米复合材料。聚丙烯中的红麻/玄武岩/纳米石墨烯纤维用于增强生物复合材料样品。采用响应面法 (RSM) 研究并根据包括玄武岩纤维重量百分比、红麻纤维以及纳米石墨烯在内的多个参数提出了生物复合材料性能的数学模型。在弯曲和冲击试验下讨论了样品的性能,并使用 FESEM 图像解释了结果。根据弯曲强度和能量吸收的增加、样品重量的减轻,将参数的最优值设置为多目标,并考虑到设计目标绘制了帕累托图。研究结果表明,弯曲性能最佳的复合材料试件弯曲强度为 51.2558 MPa,由 0.8723 wt% 的玄武岩纤维、15% 的洋麻纤维和 0.76881% 的石墨烯纳米颗粒组成。此外,冲击性能最佳的试件能量吸收率为 116,809 J / m,由 8.23% 的玄武岩纤维、0.808% 的石墨烯纳米颗粒和 15% 的洋麻纤维组成。
摘要:木质纤维素天然纤维具有亲水性,而许多复合材料的基质系统具有疏水性。天然纤维增强聚合物 (NFRP) 基质复合材料要获得良好的机械性能,依赖于界面处良好的纤维-基质结合。增强材料通常涂有两亲偶联剂以促进形成坚固的界面。一种新颖的替代方法是在与基础环氧树脂形成化学计量混合物之前,将偶联剂溶解在树脂硬化剂中。在复合材料制造过程中,偶联剂的亲水 (极性) 端迁移到表面 (内部界面) 并与纤维结合。偶联剂的疏水 (非极性) 端仍嵌入混合树脂中。复合材料样品的机械测试表明,直接添加到基质中的硅烷可产生具有增强纵向性能的 NFRP 复合材料。由于不再需要预处理纤维涂层,新技术具有经济(缩短了处理时间)、环境(消除了受污染的溶剂)和社会(减少工人接触化学蒸汽)等好处。关键词:偶联剂;环氧树脂;硬化剂;界面;天然纤维 1. 介绍
摘要:由带有天然纤维增强的聚合物基质组成的材料称为天然纤维增强聚合物复合材料(NFRCS)。科学家最近对这些复合材料非常感兴趣,因为它们比常规合成纤维增强的聚合物复合材料提供了改进的性能,其成本较低,并且具有环境优势。然而,包括γ辐射暴露在内的几个因素和纳米颗粒的添加会影响NFRC的性质。本综述将集中于伽马辐射和纳米颗粒对NFRC的机械,热和防水特性的影响。为了帮助创建新的和改进的NFRC用于不同的应用,本综述旨在通过促进纤维和矩阵之间的更好键合,以增强复合材料的整体性能,从而对NFRCS的性质以及伽马射线和纳米颗粒的影响提供全面的了解。关键词:天然纤维,聚合物矩阵,复合材料的性能,伽马射线,纳米颗粒1介绍,一般而言,复合材料可以描述为在微观上至少两种不同材料的异质混合物,具有与其组成部分不同的新型特性,通常具有几乎同质的结构,并且具有几乎同质的结构。可以根据机会结合这种属性混合的机会来量身定制复合材料的质量以满足所需应用的需求(Erden&Ho,2017)。复合材料的机械性能受到纤维结构的极大影响。此外,许多部门目前都在寻找复合材料的新型特性,例如可更新性,几乎没有环境效应和负担能力。天然纤维增强复合材料的优势比传统材料和合成纤维增强的复合材料导致这些领域的研究和创新增加(Neto等,2022)。此外,天然纤维价格便宜,密度低,并且具有许多独特的特征。与其他增强纤维不同,它们是柔性,无毒,无育和生物降解的。此外,它们很容易访问,其独特特性与用作增强剂的其他纤维的特征相似(Aravindh等,2022)。天然植物材料中发现的纤维素纤维由无定形木质素和一些螺旋纤维素微纤维的基质制成。木质素有助于将水保持在纤维内并赋予茎的强度以承受风和重力,这是防御生物学攻击的防御。半纤维素是纤维素和木质素之间的兼容剂,是天然纤维的组成部分。图1描绘了天然纤维的结构(M. K. Gupta&Srivastava,2016年)。
摘要:猪被称为主要的弯曲杆菌储层。弯曲杆菌病是人类中最常见的胃肠道疾病,主要是由于禽肉的食用而引起的,对猪肉的作用知之甚少。猪通常与c有关。大肠杆菌,包括抗菌抗性分离株。因此,必须将整个猪肉生产链视为抗菌抗菌c的重要来源。大肠杆菌。 这项研究旨在确定弯曲杆菌属的抗菌素耐药性。 在五年的时间内,从爱沙尼亚屠宰场的捕获猪的盲肠样品中分离出来。 弯曲杆菌的比例为52%。 将所有弯曲杆菌分离株鉴定为c。 大肠杆菌。 高比例的分离株对大多数研究的抗菌剂具有抗性。 对链霉素,四环素,cipro bloffro oxacin和nalidixic酸的抗性分别为74.8%,54.4%,34.4%和31.9%。 此外,分离株的高比例(15.1%)具有多种耐药性,总共93.3%对至少一种抗菌剂具有抵抗力。大肠杆菌。这项研究旨在确定弯曲杆菌属的抗菌素耐药性。在五年的时间内,从爱沙尼亚屠宰场的捕获猪的盲肠样品中分离出来。弯曲杆菌的比例为52%。将所有弯曲杆菌分离株鉴定为c。大肠杆菌。 高比例的分离株对大多数研究的抗菌剂具有抗性。 对链霉素,四环素,cipro bloffro oxacin和nalidixic酸的抗性分别为74.8%,54.4%,34.4%和31.9%。 此外,分离株的高比例(15.1%)具有多种耐药性,总共93.3%对至少一种抗菌剂具有抵抗力。大肠杆菌。高比例的分离株对大多数研究的抗菌剂具有抗性。对链霉素,四环素,cipro bloffro oxacin和nalidixic酸的抗性分别为74.8%,54.4%,34.4%和31.9%。此外,分离株的高比例(15.1%)具有多种耐药性,总共93.3%对至少一种抗菌剂具有抵抗力。
摘要:与聚合物复合材料中合成增强相关的环境挑战,例如非生物降解性和可回收性差,需要探索各种天然材料,尤其是从废物流中,以全面或部分替代此类增强。然而,这些天然纤维还提出了挑战,例如高吸水,低热稳定性和平均机械性能。为了避免这些问题,包含一种或多种类型的自然增强的天然纤维增强杂化复合材料正在增加研究兴趣。本文介绍了对天然纤维增强杂化复合材料的评论。综述了天然和合成纤维(杂化纤维)增强的热塑性和热热器。总结了纤维的特性以及所得的复合材料和加工技术。
ATIF/参考文献:Kıratlı,S.(2023 年)。先进生物复合材料:加工、特性和应用。先进自然科学与工程研究杂志,7(3),192-197。摘要——随着环境管理和可持续性的重要性日益提高,天然纤维被视为合成纤维的替代品。天然纤维既可再生又可生物降解。这样一来,合成纤维就更便宜了。天然纤维具有多种有益特性,包括高强度和可持续性、低比重和低成本。天然纤维可以使用,但它们的利用受到基质/纤维相互作用和防水性等弱特性的限制。尽管具有优异的机械性能,但玻璃、碳和芳纶等合成纤维对人类健康和环境有负面影响。将天然纤维和合成纤维结合起来是解决当前存在的缺点的绝佳方法。一种称为先进生物复合材料的新型材料结合了天然和合成成分的优点,以产生所需的品质,包括改进的机械、热和生物性能。本研究项目的目标是研究先进生物复合材料的加工、特性和应用的最新技术。这项研究将集中于生物复合材料加工技术的最新进展以及众多特性和测试程序。最后,这项研究将探讨先进生物复合材料如何应用于汽车、航空航天、生物医药和环境等行业。未来的研究表明,在广泛的工业领域增加这些环保复合材料的使用将降低污染并提高社会可持续性标准。关键词 – 天然纤维、合成纤维、先进生物复合材料、加工技术、特性方法。引言越来越多的人对创造可持续材料来取代复合材料和传统塑料感兴趣。由于对可持续材料的需求不断增加,先进生物复合材料成为一系列研究的主题。由于其可再生性、可生物降解性和对环境的影响最小,生物复合材料(由天然纤维和基质制成的材料)已成为合成材料的潜在替代品。使用生物复合材料也可能减少对化石燃料的依赖
近几十年来,天然纤维增强复合材料(NFRC)已成为传统材料(例如玻璃纤维)的有吸引力的替代品,并吸引了研究人员和学者,尤其是在环境保护的背景下。环境因素及其对可再生材料的基本特性的影响正在成为越来越流行的研究领域,尤其是天然纤维及其复合材料。尽管该研究领域仍在扩展,但天然纤维增强的聚合物复合材料(NFRC)在各种工程环境中发现了广泛使用。natu-ral纤维(NFS),例如菠萝叶(Palf),竹子,屁股,椰子纤维,黄麻,香蕉,亚麻,大麻,剑麻,kenaf和其他人具有许多理想的特性,但是他们的发育和使用了许多具有许多妇女的研究人员。这些纤维由于其各种有利的特性,例如轻度,经济性,生物降解型,出色的特定强度和竞争性机械性能,引起了人们的关注,这使它们成为有希望用作生物材料的候选人。因此,它们可以作为传统复合纤维(例如玻璃,芳香和碳)在各种应用中的替代材料。此外,天然纤维吸引了越来越多的研究人员的兴趣,因为它们在自然界和农业和食品系统的副产品中很容易获得,这有助于改善环境生态系统。本文提供了NFRC的简要概述,研究了它们的化学,物理和机械性能。这种兴趣共同涉及寻找环保材料,以取代建筑,汽车和包装行业中使用的合成纤维。天然纤维的使用不仅是逻辑的,而且是实用的,因为它们的纤维形式可以通过化学,物理或酶促处理很容易提取和强度。它还强调了与NFRC相关的一些重大进展,从经济,环境和可持续性的角度来看。此外,它还简要讨论了他们的各种应用,都重点关注他们对环境的积极影响。