澳大利亚航天工业目前正经历着前所未有的增长,公共和私人投资大量涌现。国家对空间科学和技术的大量投资凸显了澳大利亚和国际上技能差距的扩大。空间科学、工程和相关学科的就业需求预计将大幅增加。该奖学金旨在支持有兴趣继续攻读荣誉学位或硕士学位的学生。荣誉学位或硕士学位通常在本科学士学位之后,帮助学生为行业内的高科技职位以及博士候选人等更高学位的学习做好准备。它使学生能够在本科学位的基础上选择一个研究项目来探索他们的兴趣。这一资格有助于加深对空间科学和技术的理解和经验,将上游空间和下游行业联系起来。此外,它使学生在课程结束时能够获得 SmartSat 合作研究中心为符合条件的研究型博士学位申请者提供的全额奖学金或补充奖学金。
上下文。天王星和海王星的气氛以分子氢和氦气为主。在对流层上部(0.1和10 bar之间),甲烷是第三个主分子,它凝结,在CH 4中产生垂直梯度。由于这种凝结物种比H 2重,因此,由于凝结而导致的平均分子量的变化是对流的因素,传统上仅视为受温度的控制。平均分子量的这种变化使干燥和潮湿的对流更加难以启动。观察结果也显示出甲烷丰度的纬度变化,人们可以期望从一个纬度到另一个纬度的不同垂直梯度。目标。在本文中,我们研究了甲烷的这种垂直梯度及其可以采取的不同形状的影响,包括大气方案,尤其是在冰巨头对流层中潮湿对流风暴的形成和抑制。方法。我们开发了一个3D云解析模型,以按要求的规模模拟对流过程。该模型是非静水的,包括与凝结相关的平均分子量变化的效果。结果。使用我们的模拟,我们得出结论,深层大气中干对流的典型速度相当低(以1 m/s的速度),但足以维持向上的甲烷转运,并且在甲烷冷凝水平上的潮湿对流得到了极大的抑制。在冰巨头中,该标准在80 K时产生的临界甲烷丰度为1.2%(大约对应于1条水平)。先前的研究得出了对甲烷蒸气量的分析标准,该标准应在饱和环境中抑制湿对流。我们首先通过数值验证了该分析标准。然后,我们表明这种关键的甲烷丰度控制了对流风暴的抑制和形成,我们得出结论,这些风暴的强度和间歇性应取决于甲烷丰度和饱和度。在CH 4超过深层大气中这种临界丰度的区域(在天王星上的赤道和中纬度和海王星上的所有纬度)中,稳定的层几乎完全充满了甲烷在凝结水平上的饱和。在此层中,潮湿对流被抑制,从而确保稳定性。只有弱潮湿的对流事件才能发生在该层上方,其中甲烷丰度变得低于临界值。抑制潮湿对流可防止强烈干燥并保持较高的相对湿度,从而有利于这些事件的频率。在CH 4在深层大气中保持低于这种临界丰度的区域(可能是在天王星上的杆子上),没有这样的层。更强大的风暴可以形成,但它们也有点稀有。结论。在冰巨头,干对流很弱,潮湿对流受到强烈抑制。但是,当通过干对流和湍流扩散将足够的甲烷向上运输时,零星的潮湿对流风暴就会形成。由于海王星的内部热流和较大的甲烷丰度,这些风暴在海王星上应该比天王星更频繁。我们的结果可以解释冰巨头中观察到的云的零星性,并有助于指导未来的观察结果,以测试这项工作的结论。
• 缩短巡航飞行时间 (ToF) • 允许增加有效载荷质量(更多科学) • 以多种方式开放发射机会 科学界最关心的是大气不确定性。我们的制导模型已被证明对此具有弹性。 2021 天王星轨道器和探测器 (UOP) 用于定义科学轨道器/探测器并作为比较案例。
1 约翰霍普金斯应用物理实验室,空间探索部门,马里兰州劳雷尔 20723,美国; Ian.Cohen@jhuapl.edu 2 SETI 研究所,美国加利福尼亚州山景城 94043 3 美国国家航空航天局艾姆斯研究中心,空间科学和天体生物学部,美国加利福尼亚州山景城 94043 4 爱达荷大学物理系,美国爱达荷州莫斯科 83844 5 现就职于罗彻斯特理工学院,Chester F. Carlson 成像科学中心,美国纽约州罗彻斯特 14623 6 美国国家航空航天局戈达德太空飞行中心,科学与探索理事会,美国马里兰州格林贝尔特 20771 7 汉普顿大学,大气与行星科学系,美国弗吉尼亚州汉普顿 23668 8 德克萨斯大学奥斯汀分校,地球物理研究所,美国德克萨斯州奥斯汀 78758 9 兰开斯特大学物理系,英国兰开斯特 LA1 4YW 10 加州理工学院喷气推进实验室,帕萨迪纳,CA 91109,美国 11 莱斯特大学物理与天文学院,莱斯特,LE1 7RH,英国 12 巴黎大学/巴黎环球物理研究所,宇宙化学、天体物理学和实验地球物理学系,F-75005 巴黎,法国 13 法国国家科学研究中心 ( CNRS ) / 空间研究和天体物理仪器实验室 ( LESIA ) / 巴黎-默东天文台,F-92190 默东,法国 14 美国国家航空航天局兰利研究中心,汉普顿,VA 23666,美国 15 内布拉斯加大学 - 林肯分校,物理与天文系,林肯,NE 68588,美国 16 苏黎世大学,理论天体物理与宇宙学中心,计算科学研究所,190 CH-8057 瑞士苏黎世 17 利物浦大学地球、海洋与生态科学系,利物浦,L69 3BX,英国 18 东北大学行星等离子体与大气研究中心,青叶,仙台,宫城 980-8578,日本 19 美国自然历史博物馆天体物理学系,纽约,NY 10024,美国 20 哥伦比亚大学天文学系,纽约,NY 10027,美国 21 艾克斯-马赛大学马赛天体物理实验室,F-13013 马赛,法国 22 意大利国家天体物理研究所 ( INAF ) / 空间天体与行星研究所 ( IAPS ),I-00133,罗马,罗马,意大利 23日本宇宙航空研究开发机构宇宙航行科学系,日本神奈川县相模原市 252-5210 24 约翰霍普金斯大学 Morton K. Blaustein 地球与行星科学系,美国马里兰州巴尔的摩 21218 25 德国航空航天中心 (DLR),行星研究所,德国柏林 Rutherfordstrasse 2, D-12489 26 加州大学伯克利分校天文系,美国加利福尼亚州伯克利市 94720 27 伯尔尼大学空间探索与行星部门,Hochschulstrasse 6, 3012 伯尔尼,瑞士 收到日期 2021 年 10 月 21 日;修订日期 2022 年 1 月 27 日;接受日期 2022 年 1 月 31 日;发布日期 2022 年 3 月 8 日
2020 年 1 月,国际行星科学界齐聚伦敦,共同致力于实现首个专用机器人任务,探测遥远的冰巨星天王星和海王星,这是太阳系中唯一尚未被全面探索的主要行星类型。冰巨星大小的星球似乎是行星形成过程的常见结果,并且对我们理解奇异的富含水的行星内部、动态和寒冷的大气层、复杂的磁层结构、富含地质的冰卫星(天然和捕获的)和精致的行星环提出了独特而极端的考验。本文介绍了 2020 年代初冰巨星系统探索的特刊。我们回顾了未来几十年雄心勃勃的国际伙伴关系在探索天王星和/或海王星方面的科学潜力和现有的任务设计概念。
自 1961 年以来,美国已在太空中发射了七代 RPS,为 26 次任务提供动力,这些任务使世界闻名的科学探索得以实现,包括月球、太阳、金星、火星、木星、土星、天王星、海王星,以及即将发射的冥王星。这些历史性的太阳系探索任务中的所有 RPS 都超出了其设计寿命。第八种 RPS 配置,称为多任务放射性同位素热电发电机 (MMRTG),最近已获得飞行资格。它计划用于火星科学实验室探测器“好奇号”。
• 天王星大气全耦合大气环流模型的进展 - 动力学和玩具模型,Jonathan H. Jiang (JPL) • 需要在 -90 °C 至 -30 °C 范围内测试冰融化探测器?,Paula do Vale Pereira (中佛罗里达大学) • 中红外快速先进光学生命探测探测器 (MIRACLE),Yamuna Phal (科罗拉多矿业学院) • 用于行星原位光谱的微型、多功能、微观有机/无机成分分析探测器 (MOCAPS),Mool Gupta (弗吉尼亚大学) • 使用低电容固态纳米孔探测海洋世界的生命,Vanya Buvac (Goeppert LLC) • 用于增强行星保护和污染控制的激活雾系统,Gregory Fridman (AAPlasma LLC) • BOREAS - 通过模拟探测木卫二的地下海洋冰冷的表面条件,Ilankuzhali Elavarasan(德克萨斯大学里奥格兰德河谷分校)• 用于高灵敏度宽带热检测的多孔硅基热电堆,Sabah Bux(JPL)• 用于检测未来潜在海洋世界任务的有机生物特征的 SCHAN 仪器,Victor Abrahamsson(JPL)• 即将到来的天王星恒星掩星活动和影子追逐者任务概念,Kunio Sayanagi(LARC)• SLUSH:进入海洋世界的冰钻探测器,Nicklaus Traeden(Honeybee Robotics)• 海洋世界和 Wolstenholme 峡湾冰下平台的样本选择和处理(SSHOW UP),Frances Bryson(康奈尔大学)• 用于导航木卫二的垂直进入机器人(VERNE),Frances Bryson(康奈尔大学)
1. 飞掠航天器 2. 轨道器 3. 大气航天器 4. 着陆器 5. 探测车 6. 穿透器 7. 天文台航天器 8. 通信航天器 我们分别阐述这八个类别。 (另请参阅JPL公共网站,其中列出了过去、现在、未来和拟议的JPL机器人航天器任务的最新列表) 1.飞掠航天器 飞掠航天器进行太阳系探索的初始侦察阶段。它们沿着连续的太阳轨道或逃逸轨迹运行,永远不会被进入行星轨道。它们必须能够使用其仪器观察经过的目标。理想情况下,它们可以平移以补偿目标在光学仪器视野内的视运动。它们必须将数据下行链路到地球,并在其天线偏离地球点期间将数据存储在机上。它们必须能够承受长时间的行星际巡航。飞越航天器可能设计为使用推进器或反作用轮在 3 个轴上稳定,或连续旋转以保持稳定。飞越航天器类别的主要示例是旅行者 2 号,它与木星、土星、天王星和海王星系统进行了接触。飞越航天器的其他示例包括:
第一类:所有类型的目标天体任务,这些目标天体对于理解化学演化过程或生命起源无直接意义;未分化的变质小行星;其他 第二类:所有类型的任务(重力辅助、轨道器、着陆器),这些目标天体对于化学演化过程和生命起源有重大意义,但航天器所携带的污染物对未来调查造成影响的可能性极小;金星;月球(仅在极地和 PSR 中着陆任务才有有机库存);彗星;碳质球粒陨石小行星;木星;土星;天王星;海王星;木卫三†;土卫六†;海卫一†;冥王星/冥卫一†;谷神星;大于冥王星 1/2 大小的柯伊伯带天体†;小于冥王星 1/2 大小的柯伊伯带天体;其他 TBD 第三类:飞越(即重力辅助)和轨道器任务,前往对化学演化和/或生命起源感兴趣的目标天体,科学界认为该目标天体受到污染的可能性很大 2,这可能会危及未来的调查;火星;木卫二;土卫二;其他 TBD 第四类:着陆器(以及潜在的轨道器)任务,前往对化学演化和/或生命起源感兴趣的目标天体,科学界认为该目标天体受到污染的可能性很大 2,这可能会危及未来的调查。根据仪器、科学调查、特殊区域等,存在 3 个子类别(IVa、b、c);火星;木卫二;土卫二; TBD 第五类:返回所有地球:2 个子类别 - 对于科学界认为没有本土生命形式(如火星卫星)的太阳系天体,无限制返回,对于所有其他天体,有限制返回
布里格斯托克温暖空间 - **将于 2025 年 1 月 9 日恢复。** 2025 年 1 月天空指南祝大家新年快乐,希望今年的夜空比去年更加晴朗。月亮将在 13 日为满月,29 日为新月。行星:整个月从我们的位置都看不到水星。金星将在傍晚时分在西南方可见,并在 3 到 4 小时后落下。火星将整个月都可见,在午夜时分从东北偏东升起到南方约 60° 的高度,然后消失在黎明中。木星也将整个月都可见,傍晚时分从东南偏东升起到南方约 59°,并在清晨在西北方落下。土星将整个月在傍晚时分在西南方升起,并在 2 到 3 小时后落下。天王星将在傍晚时分在东南偏南方向高空约 55° 处可见(需要双筒望远镜或小型望远镜),并在月初清晨落下,月底午夜左右落下。海王星也将在傍晚时分在西南偏南方向 30° 处可见(需要双筒望远镜或小型望远镜),并在大约 4 小时后落下。10 日,月亮、木星和星团 M45(昴宿星团或七姐妹)将在傍晚时分在西南方彼此靠近。然后在 14 日,月亮和火星将在清晨时分在西南方彼此靠近。金星和土星将在 18 日至 20 日傍晚时分在西南方彼此靠近,但会在 21:00 之前落下。 30 日,巨蟹座的蜂巢星团 (M44) 将在午夜时分位于南方 57° 左右。该星团距离我们 577 光年,包含约 1000 颗恒星,但并非所有恒星都可用肉眼看到。最好使用双筒望远镜观看,最亮的恒星形成蜂巢形状,因此得名。晴朗的天空。彼得