1 约翰霍普金斯应用物理实验室,空间探索部门,马里兰州劳雷尔 20723,美国; Ian.Cohen@jhuapl.edu 2 SETI 研究所,美国加利福尼亚州山景城 94043 3 美国国家航空航天局艾姆斯研究中心,空间科学和天体生物学部,美国加利福尼亚州山景城 94043 4 爱达荷大学物理系,美国爱达荷州莫斯科 83844 5 现就职于罗彻斯特理工学院,Chester F. Carlson 成像科学中心,美国纽约州罗彻斯特 14623 6 美国国家航空航天局戈达德太空飞行中心,科学与探索理事会,美国马里兰州格林贝尔特 20771 7 汉普顿大学,大气与行星科学系,美国弗吉尼亚州汉普顿 23668 8 德克萨斯大学奥斯汀分校,地球物理研究所,美国德克萨斯州奥斯汀 78758 9 兰开斯特大学物理系,英国兰开斯特 LA1 4YW 10 加州理工学院喷气推进实验室,帕萨迪纳,CA 91109,美国 11 莱斯特大学物理与天文学院,莱斯特,LE1 7RH,英国 12 巴黎大学/巴黎环球物理研究所,宇宙化学、天体物理学和实验地球物理学系,F-75005 巴黎,法国 13 法国国家科学研究中心 ( CNRS ) / 空间研究和天体物理仪器实验室 ( LESIA ) / 巴黎-默东天文台,F-92190 默东,法国 14 美国国家航空航天局兰利研究中心,汉普顿,VA 23666,美国 15 内布拉斯加大学 - 林肯分校,物理与天文系,林肯,NE 68588,美国 16 苏黎世大学,理论天体物理与宇宙学中心,计算科学研究所,190 CH-8057 瑞士苏黎世 17 利物浦大学地球、海洋与生态科学系,利物浦,L69 3BX,英国 18 东北大学行星等离子体与大气研究中心,青叶,仙台,宫城 980-8578,日本 19 美国自然历史博物馆天体物理学系,纽约,NY 10024,美国 20 哥伦比亚大学天文学系,纽约,NY 10027,美国 21 艾克斯-马赛大学马赛天体物理实验室,F-13013 马赛,法国 22 意大利国家天体物理研究所 ( INAF ) / 空间天体与行星研究所 ( IAPS ),I-00133,罗马,罗马,意大利 23日本宇宙航空研究开发机构宇宙航行科学系,日本神奈川县相模原市 252-5210 24 约翰霍普金斯大学 Morton K. Blaustein 地球与行星科学系,美国马里兰州巴尔的摩 21218 25 德国航空航天中心 (DLR),行星研究所,德国柏林 Rutherfordstrasse 2, D-12489 26 加州大学伯克利分校天文系,美国加利福尼亚州伯克利市 94720 27 伯尔尼大学空间探索与行星部门,Hochschulstrasse 6, 3012 伯尔尼,瑞士 收到日期 2021 年 10 月 21 日;修订日期 2022 年 1 月 27 日;接受日期 2022 年 1 月 31 日;发布日期 2022 年 3 月 8 日
上下文。天王星和海王星的气氛以分子氢和氦气为主。在对流层上部(0.1和10 bar之间),甲烷是第三个主分子,它凝结,在CH 4中产生垂直梯度。由于这种凝结物种比H 2重,因此,由于凝结而导致的平均分子量的变化是对流的因素,传统上仅视为受温度的控制。平均分子量的这种变化使干燥和潮湿的对流更加难以启动。观察结果也显示出甲烷丰度的纬度变化,人们可以期望从一个纬度到另一个纬度的不同垂直梯度。目标。在本文中,我们研究了甲烷的这种垂直梯度及其可以采取的不同形状的影响,包括大气方案,尤其是在冰巨头对流层中潮湿对流风暴的形成和抑制。方法。我们开发了一个3D云解析模型,以按要求的规模模拟对流过程。该模型是非静水的,包括与凝结相关的平均分子量变化的效果。结果。使用我们的模拟,我们得出结论,深层大气中干对流的典型速度相当低(以1 m/s的速度),但足以维持向上的甲烷转运,并且在甲烷冷凝水平上的潮湿对流得到了极大的抑制。在冰巨头中,该标准在80 K时产生的临界甲烷丰度为1.2%(大约对应于1条水平)。先前的研究得出了对甲烷蒸气量的分析标准,该标准应在饱和环境中抑制湿对流。我们首先通过数值验证了该分析标准。然后,我们表明这种关键的甲烷丰度控制了对流风暴的抑制和形成,我们得出结论,这些风暴的强度和间歇性应取决于甲烷丰度和饱和度。在CH 4超过深层大气中这种临界丰度的区域(在天王星上的赤道和中纬度和海王星上的所有纬度)中,稳定的层几乎完全充满了甲烷在凝结水平上的饱和。在此层中,潮湿对流被抑制,从而确保稳定性。只有弱潮湿的对流事件才能发生在该层上方,其中甲烷丰度变得低于临界值。抑制潮湿对流可防止强烈干燥并保持较高的相对湿度,从而有利于这些事件的频率。在CH 4在深层大气中保持低于这种临界丰度的区域(可能是在天王星上的杆子上),没有这样的层。更强大的风暴可以形成,但它们也有点稀有。结论。在冰巨头,干对流很弱,潮湿对流受到强烈抑制。但是,当通过干对流和湍流扩散将足够的甲烷向上运输时,零星的潮湿对流风暴就会形成。由于海王星的内部热流和较大的甲烷丰度,这些风暴在海王星上应该比天王星更频繁。我们的结果可以解释冰巨头中观察到的云的零星性,并有助于指导未来的观察结果,以测试这项工作的结论。
• 缩短巡航飞行时间 (ToF) • 允许增加有效载荷质量(更多科学) • 以多种方式开放发射机会 科学界最关心的是大气不确定性。我们的制导模型已被证明对此具有弹性。 2021 天王星轨道器和探测器 (UOP) 用于定义科学轨道器/探测器并作为比较案例。
澳大利亚航天工业目前正经历着前所未有的增长,公共和私人投资大量涌现。国家对空间科学和技术的大量投资凸显了澳大利亚和国际上技能差距的扩大。空间科学、工程和相关学科的就业需求预计将大幅增加。该奖学金旨在支持有兴趣继续攻读荣誉学位或硕士学位的学生。荣誉学位或硕士学位通常在本科学士学位之后,帮助学生为行业内的高科技职位以及博士候选人等更高学位的学习做好准备。它使学生能够在本科学位的基础上选择一个研究项目来探索他们的兴趣。这一资格有助于加深对空间科学和技术的理解和经验,将上游空间和下游行业联系起来。此外,它使学生在课程结束时能够获得 SmartSat 合作研究中心为符合条件的研究型博士学位申请者提供的全额奖学金或补充奖学金。