H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga 国家航空航天实验室 NLR Anthony Fokkerweg 2, 1006 BM 阿姆斯特丹, 荷兰 schipiw@nlr.nl L. Zhuang, A. Meijerink, C. G. H. Roeloffzen, D. A. I. Marpaung , W. van Etten 电气工程学院电信工程组Twente, P.O.Box 217, 7500 AE, Enschede, the Dutch C.G.H.Roeloffzen@ewi.utwente.nl R. G. Heideman, A. Leinse LioniX bv P.O.Box 456, 7500 AH Enschede,荷兰 A.Leinse@lionixbv.nl M. Wintels Cyner Substrates Savannahweg 60, 3542 AW Utrecht,荷兰 m.wintels@cyner.nl 摘要 — 为加强沟通飞机上,需要具有宽带卫星功能的新型天线系统。该技术将通过为机组人员提供机上信息连接来增强航空公司的运营,并将为航空公司带来直播电视和高速互联网连接。乘客。出于空气动力学原因,在飞机上安装此类系统需要开发一种非常低调的飞机天线,该天线可以指向上半球任何地方的卫星。可控低剖面天线成功的关键是具有宽带天线元件阵列的多层印刷电路板 (PCB) 和具有适当波束控制能力的紧凑型微波系统。 div>本文介绍了使用光环谐振器级联作为面包板 Ku 波段相控阵天线的一部分开发原型 8x1 光束形成网络。12
摘要 本研究提出了一种用于脑机接口 (BMI) 的小型双波段植入式天线,可在工业、科学和医疗 (915 MHz、2.45 GHz) 频段工作。该天线灵活且尺寸小巧,易于集成到植入式设备中,同时其双波段谐振可实现节能运行。通过参数分析和优化,天线实现了小型化,且不影响性能。采用缝隙接地和贴片短路针技术实现双波段操作,天线和 BMI 设备的小型化尺寸分别为 9.8 mm 3 和 420 mm 3。对于实际场景,使用具有不同层的七层大脑模型和真实的头部模型来分析天线在异构环境中的性能。如果最大辐射功率在 915 和 2450 MHz 下分别低于 10.1 和 8.1 mW,则计算出的最大特定吸收率 (SAR) 值满足 IEEE 植入式医疗设备安全标准 C95.1-1999 和 C95.1-2005。为了验证模拟结果,用碎猪肉对制作的原型进行测试,得到令人印象深刻的 165 MHz 和 625 MHz 阻抗带宽。测量结果显示在 915 MHz 和 2.4 GHz 频率下分别有 -28.3 dBi 和 -18.5 dBi 的显著增益。这些发现验证了模拟的准确性,没有任何偏差。此外,链路预算分析结果表明天线系统可以以 100 kbps 的数据速率传输长达 10 m 的信号。
在本文中,我们跟进了初步的生物学研究,这些研究表明,重复电磁场刺激 (REMF) 降低了有毒的淀粉样蛋白-β (A β ) 水平,而淀粉样蛋白-β (A β ) 水平被认为是阿尔茨海默病 (AD) 的病因。这些暴露的 REMFS 参数为频率 64 MHz 和原代人类神经元培养物中 0.4 至 0.9 W/Kg 的特定吸收率 (SAR)。在这项工作中,使用高频仿真系统 (HFSS/EMPro) 软件模拟了电磁场 (EMF) 模型。我们的目标是在模拟人头中实现降低生物学研究中有毒 A β 水平所需的 EM 参数 (EMF 频率和 SAR)。此处执行的模拟将有可能导致成功开发一种用于治疗阿尔茨海默病患者的暴露系统。研究中考虑了一种流行的 VFH(甚高频)贴片微带天线系统。选择基于简单易用的构造和对 VHF 应用的适用性。评估了头部各层(包括皮肤、脂肪、硬脑膜、脑脊液 (CSF)、灰质、脑组织)的 SAR 和温度分布,以确定模拟人头的有效性 SAR 和安全温度升高。基于馈入天线馈线的 1 A 峰值电流脉冲,可实现 0.6 W/Kg 的最大 SAR。在模拟人头的各个层上观察到 0.4 到 0.6 SAR 的范围。天线的初始设计表明天线尺寸在长度和宽度上约为 1 米,这表明 AD 治疗是一种固定的实用模型。未来将发展可穿戴天线和曝光系统,以实现高效率和患者舒适度。
在电信智能天线系统中,透镜可用于主波束聚焦、旁瓣抑制和波束切换目的 [1]。透镜具有各种各样的形状和材质,但介电损耗非常低。陶瓷在较高温度下具有良好的稳定性,并且其介电常数可以调整。同时,它也有一个缺点,那就是制造温度高,导致制造过程中的能耗高,从而增加了生产成本。室温制造法 (RTF) 发明后,锂钼氧化物 (Li 2 MoO 4 ,LMO) 陶瓷的水基悬浮液可以在室温下制造,而不必在 400 ◦ C 以上的温度下制造 [2]。它的相对介电常数为 5.1,在 9.6 GHz 时的损耗角正切值为 0.0035 [3, 4]。此外,已经展示了 4 GHz 下的 LMO 陶瓷贴片天线 [5]。在 LMO 混合物中添加不同的介电材料可以改变其介电性能。 Li 2 MoO 4 -TiO 2 复合材料在 9.6 GHz 时的相对介电常数为 6.7–10.1,损耗角正切值为 0.0011–0.0038,具体取决于其体积百分比 [6]。(1 − x )Li 2 MoO 4 - x Mg 2 SiO 4 在 9 GHz 时的介电常数为 5.05–5.3(未提及损耗角正切)[7]。3D 打印 LMO 在 9.6 GHz 时的介电常数为 4.4,损耗角正切值为 0.0006 [8],据报道,超低介电常数 LMO 复合材料的介电常数为 1.12,损耗角正切值为 0.002 [9]。LMO 复合材料的射频应用研究尚处于早期阶段。在本信中,制作了直径为 30 毫米的钼酸锂 (Li2MoO4,LMO) 空心玻璃微球 (HGMS) 复合材料和透镜,并在 Ku 波段用波导馈源进行了分析。
摘要 多功能、可部署和可打包天线对于许多应用都非常重要,包括无人机、卫星通信(例如立方体卫星)和通用机载和星载通信系统。值得注意的是,这种天线为上述应用提供了新功能。在本文中,我们介绍了关于可折叠和物理可重构天线的新兴研究,这些天线可以改变其形状以适应和重新配置其电磁性能(例如工作频率、带宽、极化、波束宽度等)。 1. 简介 可重构、可调、多功能、可部署的天线系统已广泛用于支持无线通信系统的多种服务。电气和机械重构方法已经得到开发并应用于机载和星载系统的各种应用,例如通信、侦察、传感和能量收集 [1],[2]。最近推出的一类新的物理可重构天线是折纸天线 [3]。与传统天线相比,折纸天线具有独特的优势,例如性能可重构、可调性和高效存放。它们固有的电磁和机械多功能行为使它们适合便携式军事和太空应用,这些应用对空间要求严格(例如,小型卫星平台的空间限制)。此外,折纸天线变形的能力使得开发具有前所未有和变革性能力的新型电磁 (EM) 系统成为可能,例如:(a) 天线可以改变其几何形状,以根据时间调整其性能并实现多功能性,(b) 2-D 和 3-D 天线阵列可以改变其覆盖面积、形状和/或元件分离,以实现最佳波束成形、波束控制和扫描范围,以及 (c) 可重构频率选择表面可以改变其性能以支持可调和多功能天线和阵列的操作(见图 1)。[4] 中可以找到有关折纸天线和可展开电磁结构的最新评论。
• 需要有效的秘密安全许可 • 学士学位或同等军事职业专长(MOS)代替学位 • 4年以上相关WIN-T系统实践经验 • 频谱管理、卫星通信、射频通信、地面通信系统以及高频、超高频和高级极高频通信系统。多样化的技能包括:故障隔离和解决、编写、培训和整合与多个通信系统及其子组件相关的标准操作程序 • 熟练使用测试测量和诊断设备(TMDE),例如万用表、Firebirds和频谱分析仪。能够监控维护概念的变化以确定关键的可维护性要求 • 具有 AN/TSC-208 卫星便携式终端 (STT)、AN/TSC-202 HP STT、AN/TRC-219 战术中继塔 (TR-T)、高频网络无线电 (HNR) 视距 (LOS) 网络、Brocade 交换机、瞻博网络路由器、Daytron 和 M20“移动”天线系统、AN/TSC-156D (Phoenix)、AN/TSC-167/185 (STT)、AN/TSC-93D 战术卫星方舟、OL-87 指挥所节点、AN-PYQ 10 简单密钥加载器、AN/TRC-170 对流层散射微波无线电终端和 AN/TTC-59 联合网络节点的实际现场和讲师/课堂经验 • 具有 WIN-T 系统经验, AN/TSC-169 单元枢纽卫星卡车 (UHST) 和 STT Lot 10 Ku 和 Ka 波段设备以及时分多址 (TDMA) 和频分多址 (FDMA) 网络。配置、操作和维护主参考终端 (MRT) 系统。• 必须持有美国护照 • 有机会在佐治亚州戈登堡、北卡罗来纳州布拉格堡、肯塔基州坎贝尔堡和德克萨斯州胡德堡工作 • 至少需要 25% 的 CONUS 和 OCONUS 差旅
访问点(AP)建筑物分配框(BDF)通信,空间和技术委员会(CST)通信服务提供商(SP)分布式天线系统(DAS)电气分配委员会(EDB)入口设施(EF)光纤电缆(FOC)光纤(FOC)光纤到家用/前列/premise/premise/premise/premise(ftth/p)固定的无线电(FWA)地板(FWA)地板(FWA)远距离(FD)区域(HDA)热浸镀锌(HDG)内建造物理基础设施(IPI)内建造解决方案(IBS)信息与通信技术(ICT)国际电子技术委员会(IEC)国际标准化组织(ISO)国际电视联盟(ITU)国际电信联盟(ITU)主室(MDA)主机室(MDA)电视室(MDA),Munitical and uneraling室(MDA) (MOMRAH) Mobile Service Telecoms Room (MSTR), Multi-dwelling Unit (MDU) Network (NW) Network Termination Point (NT) Optical distribution box (ODB) Optical Distribution Frame (ODF), either BDF or UDF Outside Plant (OSP) Power over Ethernet (PoE) Quality of service (QoS) Roof Top Telecoms Room (RTTR), Saudi Building Code (SBC) Single-dwelling Unit (SDU)补充键合网络(SBN)电信室(TR):电信空间(TS):地下入口盒(UEB):单元分配器(UD)单位分配框架(UDF)未塑料的聚乙烯基氯化物(UPVC)未展示的扭曲对(UTP)
交配策略解释了新兴的真菌疾病中的性偏见感染1 2 Macy J. Kailing 1,Joseph R. Hoyt 1,J。Paul White 2,Jennifer A. Redell 2,Heather M. Kaarakka 2,3和Kate E. Langwig 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5资源,麦迪逊WI 53707 7 8摘要9 1)交配动力学可以通过影响10种人口增长和适应率的人口速率以及影响死亡率11风险的单个特征来控制物种的影响,从而影响全球快速变化。12 2)在这里,我们检查了Myotis lucifugus的交配物候期的性别差异,以了解生殖策略如何对疾病的影响有所影响,因为交配14个季节与暴露于致命真菌病原体(Pseudogymnoascus 15 destructans)相吻合。我们期望性别之间的活动差异可以改变季节性疾病16动力学,因为P. Destructans只能在蝙蝠17冬眠的凉爽温度下复制。18 3)我们使用了安装在Hibernacula和Pit标签入口处的被动天线系统,表征了由白鼻综合征影响的蝙蝠的活动模式。我们还测量了秋季交配和早期冬眠期间蝙蝠上的病原体负荷,以评估21感染严重程度如何根据宿主物候变化。22 4)我们发现,女性在秋天,在男性之后到达,在最温暖的夜晚中,有23名妇女活跃起来。男性在24个交配期间保持高度活跃,而在秋季则比女性保持活跃。33 34 1。简介35重要的是,25个配合物候学的这些差异对应于26个冬眠中女性的更严重的感染作为男性活性,从而抑制病原体的生长。27 5)性别之间的活动差异以及从群体到冬眠的过渡28可能反映了男性最大化其交配机会,而女性则节省了29能量以满足春季迁移和繁殖的成本。更广泛地说,我们的结果30显示了配合物候学如何对一种新型疾病的性偏见影响,31强调了理解物种交配系统的价值,以预测32个环境变化的影响。
cih将破坏性的技术推向希腊雅典太空行业的全球领导者 - 2025年2月3日 - 高级卫星通信(SATCOM)技术的巡回赛(Cihite)融合了Hellas(CIH),已被选为一家劳埃雷特(Laureate)的创业公司(SATCOM)技术的创新者,以在Paris perace commace commace commace commace(packeret 5 februance)(februance)(februance)竞争。作为挑战的少数有前途的初创公司之一,由于他们的技术在太空行业中发挥了破坏性作用,CIH将向全球顶级空间行业承包商和投资者组提供开创性的平板天线(FPA)芯片解决方案。CIH的专有FPA方法将IIII-V复合半导体与硅结合在三维(3D)封装中,可实现轻质,具有成本效益和高性能天线系统,适用于低地球轨道(LEO)卫星应用。FPA芯片设计是在紧凑的包装(SIP)和包装天线(AIP)配置中执行的,外壳IIII-V天线前端和硅电路最小化的足迹。享有声望的PSW创新挑战挑战提高了航空航天技术中有希望创新的知名度,同时促进了参与者与主要航空航天行业利益相关者之间的合作。选择了经过严格的评估过程后,获得了桂冠,以进行快速,高级的现场演示文稿,以解释他们的想法并证明其对空间行业的潜在影响。除了参加创新挑战外,CIH还将在2月4日的大会计划中提出“卫星部门的半导体创新”。今年的挑战将于2月4日下午3:00举行。 CIH的Paolo Fioravanti说:“我们选择创新挑战强调了我们的使命的价值,即通过使SATCOM行业可以使用高级,高效的FPA芯片来重塑卫星通信的未来。”“我们很荣幸成为本次活动的一部分,并为航空航天部门的潜在资金,合作伙伴关系和进一步的发展机会提供了机会。”与传统的FPA芯片组相比,CIH的3D芯片堆叠技术可将天线的重量和大小减少60%,从而极大地提高了可扩展性和成本效益 - 这对于Leo卫星部署的需求不断增长至关重要。与会者可以通过在巴黎太空周的Booth E02访问CIH,了解有关公司及其下一代卫星通信的变革性路线图的更多信息。