Ronald K. Bartley 上校,美国空军飞行大学 Eric Braganca 中校,美国空军海军航空站,马里兰州帕塔克森特河 Kendall K. Brown 博士 美国国家航空航天局马歇尔太空飞行中心 Steven D. Carev 上校。美国空军,已退役,阿拉巴马州达芙妮 Clayton K. S. Chun 博士 美国陆军战争学院 Mark Clodfelter 博士 国家战争学院 Conrad Crane 博士 美国陆军军事历史研究所所长 Michael D. Davis 上校,美国空军空军研究所 Dennis M. Drew 上校,美国空军,已退役,美国空军高级航空航天研究学院 Charles J. 少将Dunlapjr.,美国空军 五角大楼 Stephen Fought 博士 美国空军航空战争学院(名誉教授) Richard L. Fullerton 上校,美国空军 美国空军学院 Derrill T. Goldizen 中校,博士。美国空军,已退休 马萨诸塞州韦斯特波特角 W. Michael Guillot 上校,美国空军大学 John F. Guilmartin Jr. 博士,俄亥俄州立大学 Amit Gupta 博士,美国空军航空战争学院 Grant T. Hammond Dean 博士。北约国防学院 Thomas Hughes 博士,美国空军高级航空航天学院 J. P. Hunerwadel 中校,美国空军,Redred LeMay 理论发展与教育中心 Mark P. Jelonek 上校,美国空军 五角大楼 John Jogerst 上校,美国空军。已退休 佛罗里达州纳瓦拉 Charles Tusdn Kamps 先生,美国空军空军指挥参谋学院
1 概要。区域增长集群。新墨西哥太空谷联盟是一项全面而包容的跨部门倡议,重点关注商业、私营部门、“新太空”行业的区域增长集群。太空包括参与开发、提供和使用太空相关产品和服务的公共和私人参与者,包括制造和使用太空基础设施(地面站、运载火箭、卫星)、太空应用(导航设备、卫星电话、气象服务)和相关科学研究。由于太空是一个如此广泛的领域,增长将涵盖许多行业,包括 IT/网络安全、制造业和工程业。联盟的新太空重点旨在开启第二个太空时代。1957 年,当第一颗人造卫星发射时,太空探索、军事创新和通信由国家太空和国防机构主导。在新世纪,除了阿波罗、航海者、哈勃和创世纪等名字外,还有 SpaceX、SpaceShip 2 和蓝色起源。私营公司通过发射卫星、为国家太空项目提供零部件以及建造自己的载人火箭,满足了全球对互联网、移动和其他太空技术的需求。去年,我们看到了第一批平民乘坐亚轨道火箭旅行——包括理查德·布兰森的维珍银河,从新墨西哥州的美国太空港发射。私人参与也加强了公共部门的太空产业。GPS 和遥感对于抗击疫情至关重要,用于测量社交距离、告知暴露情况和衡量供应链健康状况。在俄罗斯入侵乌克兰期间,美国太空部队全天候使用太空资产协助决策。太空谷联盟将其资源集中在新太空经济上,同时追求全球准备和竞争力的要求。联盟成员和合作伙伴。阿尔伯克基市是新墨西哥州最大都市区市政府,在改善少数族裔社区经济方面具有相当大的影响力。新墨西哥州中部社区学院 (CNM) 是该国排名第一的社区学院,为西班牙裔学生提供副学士学位和证书,为美洲原住民提供副学士学位和证书。新墨西哥州航天港管理局在新墨西哥州中南部农村地区运营着世界上第一个专门建造的 FAA 许可商业发射综合体——美国太空港。CNM Ingenuity, Inc. 是 CNM 的非营利经济发展部门,通过重返工作岗位和技能提升计划,为工薪家庭、农村远程学习者、低收入者、失业者和未充分就业者创造就业机会。新墨西哥贸易联盟是一家非营利组织,为新墨西哥州的公司提供出口援助,并制定计划,以提高该州的全球竞争力和连通性。NewSpace New Mexico 是一家非营利组织,通过让行业领导者获得设备和测试、原型设计、先进制造、协作工作空间和服务来加速太空创新,从而推动他们从概念到产品再到销售。分奖项获得者包括 (1) 高等教育:新墨西哥大学、新墨西哥矿业技术学院、新墨西哥州立大学、纳瓦霍技术大学;(2) 协会:新墨西哥州
我们正处于行业发展的最佳时期,可以打造未来 10 年的太空电子。市场报告显示,未来十年可能会发射多达 20,000 颗卫星。连接性和带宽需求不断增加;设计灵活性和性价比是几乎所有系统设计人员最关心的问题。COTS 太空电子将通过提供包括经济实惠、风险缓解解决方案等不同元素来推动太空繁荣。“太空中的 COTS” 并不是一个新概念。新的是能够将 COTS 电子设备更好地集成到整个航天工业正在开发的更高密度、更紧凑、基于网络的卫星集群中。本白皮书不仅探讨了对太空电子中更高计算性能和更紧密系统集成的追求如何为系统工程师带来新一轮的设计挑战,还探讨了 COTS 电子设备的使用如何应对这些挑战。还展示了在设计周期开始时应解决的特定设计优先事项,以帮助降低风险并确保可靠的系统运行,以及针对近地轨道 (NEO) 和低地轨道 (LEO) 应用(如小型卫星和短时太空飞行)中 COTS 组件的新 300 系列验证级别。从私人资助组织到政府实体,卫星和有效载荷制造商面临的一个日益严峻的挑战是满足积极的开发到部署时间表。此外,两个大的行业趋势是公司购买更高级别的组装件(子系统,而不是单元或电路板)以及多个卫星子系统的数字化程度不断提高。与大多数行业一样,需要更快的处理、更多的 I/O、更多的集成、更快的交付、更高的容量等。但系统还必须经受住太空和辐射效应的严酷考验,并满足更高数据吞吐量的处理要求。构建太空电子设备的核心是降低风险。每个任务都是独一无二的,这些风险根据所需的可靠性水平、任务持续时间、轨道位置和倾角、轨道类型、载人还是无人等而有所不同。环境因素——温度波动、冲击和振动、辐射暴露——也都会影响风险因素。本文详细介绍了如何广泛使用具有成本效益的 COTS 硬件,使卫星提供商能够使用经过验证的可靠嵌入式设计来满足紧迫的时间表。
我要感谢来自美国和印度-太平洋地区及其他地区的大使、官员和众多专家参加我们的系列会议,分享他们的宝贵见解。我们衷心感谢印度尼西亚外交政策界迪诺·贾拉尔博士和他的团队在雅加达召开了一次精彩的会议,来自东南亚各地的代表参加了会议。东西方中心太平洋岛屿发展计划主任玛丽·哈托里博士和她的团队还在檀香山组织了一场精彩的会议,召集了来自太平洋岛屿地区的利益相关者。华盛顿特区会议的协调工作由东西方中心项目经理罗斯·托科拉和东西方中心项目协调员拉托亚“托亚”·杰克逊领导,并得到了我的执行助理安翁·斯利瓦和华盛顿办公室所有人的大力支持。
建立集中代理,以协调太空活动并参与多边任务和计划启动国家太空计划,重点关注太空情境意识(SSA)应用程序通过与太空相关或特定空间特定的课程
什么是铁超载?当您体内铁过多时,就会发生铁超负荷。对于那些获得大量红细胞输血的人来说,这可能是一个问题。红细胞含有铁。每次收到红细胞输血时,您都会在体内添加更多的铁。您的身体没有一个很好的方法来摆脱从输血中获得的额外铁。这种铁可以在您的重要器官中积聚,并可能随着时间的推移伤害它们。本节帮助您了解铁超负荷以及如何治疗铁超负荷。还请访问我们的在线学习中心,以查看有关铁超载的网络广播。1。实际上是什么导致铁超载?随着每个红细胞输血,您的身体会收到更多的铁。随着红色细胞随时间而分解,血红蛋白中的铁被释放。您的身体没有自然的方法可以摆脱过多的铁,因此将额外的铁存储在身体组织中。这就是为什么接受输血的患者有铁超负荷的风险。您的身体通常最多存储3或4克铁。平均而言,一个人在输血期间会收到2个单位的血液,并且每个单位的血液都有200至250毫克的铁。因此,每2个单位输血都会为您的体内增加400至500毫克的铁。如果您每月获得2个单位的输血,则一年内将积累约5至6克(5000-6000毫克)的额外铁。您的身体不知道如何摆脱多余的铁。,但它确实知道如何存储它。一种称为转铁蛋白的蛋白质通过您的血液和储存的器官携带铁。制造新血细胞的额外铁通常存储在肝脏,脾和骨髓中。这种多余的铁可以导致其沉积器官受伤。过量铁可能会在这3个普通存储站点中积聚,也可能在其他通常不存储铁的器官中,例如:胰腺关节(尤其是手中)
原子和离子的捕获和冷却方法对原子钟产生了革命性的影响,因为它们可以减少甚至消除主要的系统频率偏移 [1]、[2]、[3]。捕获原子/离子光学钟的性能比其前代产品提高了几个数量级,并已成为国家计量实验室研究项目的关键组成部分 [4]、[5]。基于捕获离子的连续运行原子钟已经存在了几十年,但迄今为止仅限于地面应用 [6]。本文介绍了 NASA 的深空原子钟 (DSAC),它于 2019 年发射,成为第一台在太空中运行的捕获离子原子钟 [7]。DSAC 的设计不包括低温技术、灵敏的微波腔或激光器。相反,它在接近室温的温度下运行,使用简单的行波微波元件,并使用等离子体放电深紫外光源。这些元件都具有很高的成熟度和强大的可操作性,使其能够发射到太空并在太空中运行。在地面上,DSAC 展示了 1.5x10 -13 /t 1/2 的短期分数频率稳定度 [8]。在太空中,它运行了 2 年,实现了每秒 1.5x10 -13 的分数频率稳定度,超过一天的平均时间的长期稳定性为 3x10 -15,23 天内的时间偏差仅为 4 纳秒(未消除漂移),估计漂移为每天 3.0(0.7)x10 -16。在目前使用的最稳定的空间时钟中,每个时钟都建立了至少一个数量级的新空间时钟性能标准 [9],[10],[11]。由于对辐射、温度和磁场变化的敏感度低,DSAC 时钟也适用于太空环境。预计这种级别的空间时钟性能将实现单向导航,即在现场测量信号延迟时间,从而实现近实时深空探测器导航 [12 ] 。在本文中,我们将描述 DSAC 在太空中的性能及其环境敏感性、该技术的主要应用以及未来发展方向。
军事上,空间是陆地力量的关键推动力。控制最终的高空比以往任何时候都更有争议。中国,俄罗斯,印度和美国已经测试了能够达到低地球轨道(LEO)的反卫星(ASAT)导弹。5个国家正在追求电子战,定向能源和网络帽质关系,可以暂时或永久禁用卫星或破坏支持太空的服务。6尽管第一次海湾战争被广泛认为是第一个支持太空的冲突,但在公开冲突中,没有一个国家尚未争夺空间。7,因此,空间com bat策略目前依赖于从其他DO的主管,模型和练习中得出的理论基础,而不是具体的历史战斗例子。现实世界中的空间战斗肯定会改变当今的空间策略,但缺乏他的曲折模型使一个彻底而健全的理论背景成为未来太空冲突的至关重要的起点。
IRMMW-THz 2023 是一场纯现场活动,今年没有混合组件。完全面对面的会议将在 Centre Mont-Royal 举办,距离麦吉尔大学主校区仅一个街区,可通过所有主要公共交通路线轻松抵达,这些公共交通路线可让您前往蒙特利尔这座迷人的城市的其他地区。Centre Mont-Royal 是一个现代化的会议设施,曾举办过许多著名的会议,非常适合举办我们规模适中的会议,拥有宽敞的研讨会剧院供全体会议使用,并设有方便使用的分组讨论室供我们举办五个平行会议。会议参展商和海报会议将在 Foyer International(3 楼)和 Foyer Mont-Royal(4 楼)举办,为交流和社交活动提供大量机会。除了这份印刷版会议计划外,您还可以通过 Whova 数字平台和移动应用程序访问该计划,我们将在活动期间传达交流和通知。