4.极地卫星运载火箭 (PSLV) 极地卫星运载火箭 (PSLV) 是印度的第三代运载火箭。这是印度第一款配备液体级的运载火箭。在 1994 年 10 月首次成功发射后,PSLV 成为印度可靠且用途广泛的主力运载火箭。该运载火箭成功发射了两艘航天器 - 2008 年的 Chandrayaan-1 和 2013 年的火星轨道器航天器 - 后来分别前往月球和火星。PSLV 是一种四级火箭,前三级用完后会落回海洋,而最后一级 (PS4) - 在将卫星发射到轨道后 - 最终成为太空垃圾。5.小型卫星运载火箭 (SSLV) SSLV(小型卫星运载火箭)是用于将小型卫星发射到地球低轨道的最小运载火箭(110tn)。• 它是一个三级全固体运载火箭,能够将 500 公斤的卫星发射到 500 公里的低地球轨道,将 300 公斤的卫星发射到太阳同步轨道。
摘要 — 随着太空活动的迅速扩展和太空垃圾的不断积累,空间领域感知 (SDA) 已成为维持安全太空行动的关键。本文提出了一种使用卫星群和区块链的去中心化解决方案,其中卫星(节点)充当验证者和批准者的角色,以安全地验证和存储碎片跟踪数据。我们的模拟表明,网络在约 30 个节点的情况下实现最佳性能,平衡吞吐量和响应时间稳定在 4.37 秒。这些结果表明,可以通过将大型网络分离为较小的自主群来有效地管理它们,每个群都针对特定任务进行了优化。此外,我们将去中心化群架构的性能与完全共享角色模型的性能进行了比较,并表明当角色分离时,可扩展性和响应时间显着改善。索引术语 — 空间领域感知、区块链、分布式账本、安全
凭借月船号和曼加里安号任务的开创性背景,令人兴奋的太空探索在理解宇宙无限性方面即将出现。在地球轨道、月球和行星际任务领域,近几十年来引入了许多新的创新理念。未来的太空探索将为我们提供一个提高生活质量和环境质量的绝佳平台。然而,太空活动的增加给我们带来了新的问题,例如需要管理太空垃圾的有害影响。人们还认识到,大型近地小行星 (NEA) 撞击地球的可能性虽然很小,但确实存在。当今的技术已经足够成熟,可以在需要时制定适当的缓解措施来避免 NEA 撞击灾难。本次演讲概述了一些令人兴奋的未来技术和科学可能性。这些挑战必将激励和吸引新一代印度学生、科学家、工程师、教育工作者、法律专家和管理人员。
摘要:太空垃圾对绕地球轨道运行的卫星构成威胁。在撞击的情况下,卫星可能遭受从局部陨石坑到子系统故障,再到航天器完全损毁的损坏;大型碰撞事件可能导致航天器碎裂。模拟和测试碎片撞击可能有助于理解这些事件背后的物理原理、模拟影响以及开发专用的保护系统和缓解策略。在此背景下,帕多瓦大学的空间碎片小组通过在专用的超高速撞击设施中进行实验活动以及使用商业和定制软件进行数值模拟来研究太空碰撞。本文概述了帕多瓦大学过去 10 年开展的研究活动。首先,介绍了超高速撞击测试设施,并总结了过去几年进行的主要实验活动。本文的第二部分描述了撞击建模研究的进展,重点是模拟复杂的碰撞场景。
自 20 世纪 90 年代以来,外太空探索一直是科学界关注的焦点。而人文学科对于此类活动的社会作用的兴趣则断断续续。然而,在过去 20 年里,人们对太空探索社会方面的兴趣急剧增加,部分原因是与超级富豪有关联的大型私营部门参与者的出现,例如埃隆·马斯克 (Elon Musk) 的 SpaceX、杰夫·贝佐斯 (Jeff Bezos) 的蓝色起源 (Blue Origin),以及理查德·布兰森 (Richard Branson) 的维珍银河 (Virgin Galactic)(尽管影响较小)。推动这种转变的其他因素包括大规模太空旅游的前景、从开采主小行星带获得巨额财富的可能性、在月球南极建立永久基地的希望重燃以及本世纪中叶登陆火星的前景。其他关键因素包括全球战略转移、发射能力横向扩展到主要欧美国家之外,以及中国崛起为能够让首位宇航员登陆火星的航天超级大国之一。除此之外,我们还可以考虑日益严重的太空垃圾问题,例如
太空强国(美国、欧洲航天局 (ESA)、中国和俄罗斯)目前正在制定国家太空交通制度,但并未充分考虑《外层空间条约》 (OST) 商定的“各国探索和利用外层空间活动的原则”。卫星交通的快速增长导致了太空垃圾,无线电频率和相关轨道的稀缺,这造成了明显的危险局面。包括美国在内的各国在联合国和平利用外层空间委员会 (UNCOPUOS) 就 21 项长期太空可持续性指导方针达成一致,其中一些与太空交通管理 (STM) 有关。UNCOPUOS 也开始着手制定共同的 STM 实践。然而,美国的空间管理政策——前总统特朗普在两份白宫政策声明中宣布——将美国 STM 政策定位于“轻触式”管理,这与联合国外层空间委员会、欧空局和俄中外层空间联盟正在进行的 STM 努力不同。两份白宫政策声明根据私营企业和政府来源提供的流量数据管理,将美国 STM 政策领导权分配给商务部 (DOC)。DOC
美国国防部 (DOD) 的目标是加强对太空敌对行为的探测与归因,保护联合部队免受敌对行动的侵害,并通过更具弹性的太空架构确保对现代战争至关重要的太空任务的执行。国防部已经确定美国太空架构需要从过度依赖单一、高度专业化和复杂的卫星转向“弹性设计”架构。太空弹性可以通过欺骗、分解、分发、多样化、扩散和保护的组合来实现,并应通过模拟、建模和战争游戏进行校准。可以通过电磁频谱操作、轨道机动以及核和网络强化来增强对太空威胁的防护。通过空间域感知能力可以快速准确地检测和跟踪太空物体。 2022 年,国防部探测并跟踪了约 47,900 个太空物体,包括 7,100 个活跃有效载荷以及非活跃有效载荷、废弃火箭助推器和太空垃圾。Stephen J. Flanagan、Nicholas Martin、Alexis A. Blanc 和 Nathan Beauchamp-Mustafaga,《太空行动威慑框架》,兰德公司 (2023 年 8 月)。https://www.rand.org/pubs/research_reports/RRA820-1.html。
2021 年之前的十年,卫星发射数量创下了历史新高。虽然在 1957 年 Sputnik 1 发射后,在轨卫星数量最初缓慢上升,但 2010 年有近 700 颗卫星被发射到太空,而 2020 年则有超过 1200 颗卫星被发射。这种指数级增长没有停止的迹象,并受到太空日益私有化和商业化的推动——“新太空”时代。几十年来,航天飞行主要是少数几个主要涉及科学和军事利益的国家机构的专利。然而,现在越来越多的公司和初创公司正在为民用市场争夺太空。应用范围广泛,涵盖从地球观测到广播、通信和导航等各个方面。太空已经转变为一个经济部门,现在拥有关键的基础设施。这在低地球轨道 (LEO) 尤为明显,低地球轨道是太空中高度可达 2000 公里的区域。到目前为止,已有约 7000 个人造物体被送入近地轨道,其中大部分仍在那里。太空运输带来了无数污染碎片。据估计,有 1 亿块太空垃圾绕着地球运行,大小在 1 到 10 毫米之间——这是一个日益严重的问题。
潜在的社会效益也十分显著:组织可以通过帮助改善空气质量,从而降低呼吸道疾病,并帮助提高公民的福祉,为可持续环境做出贡献。但这些技术的潜力还延伸到移动领域中任何希望优化车队位置、可用性和路线的组织——无论是汽车、自行车还是送货卡车。例如,富士通使日本邮政能够优化运输路线组合、卡车类型和货物负载,以减少分配和分配问题,方法是计算在正确的时间在正确的位置适当分配自行车,以实现最佳利用率。同样,垃圾处理公司也可以考虑使用此类技术来优化垃圾车的放置和路线,以在最短的时间内实现最高效率。最后,如果全球移动领域的优化示例不足以重申这一点,这里有一个超凡脱俗的例子,字面意思是外太空。富士通与 Astroscale、格拉斯哥大学合作,为太空垃圾清除任务开发价值证明,使这些任务更具商业可行性。随着移动出行领域的发展指向无人机出租车的未来,燃料消耗的价值不难想象。毫无疑问,能够发现洞察力并利用移动出行生态系统中的利益相关者,为未来快速发展的移动出行铺平了道路。
注解。当前,世界各国许多政府机构和私营企业正奔向地球周围的外层空间,希望找到解决通讯、工业、安全、国防等领域问题的有效解决方案。此类行动通常涉及大量发射小型廉价卫星,而这反过来又会导致太空垃圾数量的增加。本文探讨了发达的哲学和高级系统模型如何有效地组织处于其发展和成长的不同阶段的分布式空间系统。空间捕获技术是通过高级递归移动代码对分布式环境进行并行映射而产生的,能够有效地为任何网络协议和大型卫星星座(主要是位于低地球轨道的卫星星座)的重要应用提供支持。本文介绍了一些技术解决方案的例子,用于在卫星之间建立基本的通信,从第一次通常是混乱的发射开始,到在不断增长的星座中分发和收集数据,即使卫星之间的通信不稳定且快速变化。该工作描述了在卫星间距离可预测的情况下如何组织和注册网络拓扑,以及固定的网络结构如何帮助解决复杂问题。这些结构以及与太空发展局新的多卫星、面向安全的架构相关的结构,可以有效地整合持续的地球观测和基于自传播移动情报的导弹跟踪和消除的共同水平的搜索。该技术的先前版本已在许多文章和六本书中描述,并已在世界各国开发和使用,而最新版本甚至可以在大学环境中有效实施。关键词:太空征服、卫星星座、太空捕获技术、通信协议、太空发展机构的新架构、运输、控制和跟踪级别。抽象的。目前,许多国家的政府机构和私营公司正纷纷涌入地球周围的太空,希望提供智能通信、工业、安全和防御解决方案。这通常涉及大量发射小型廉价卫星,这也导致了太空垃圾的增加。本文讨论了发达的高级系统哲学和模型如何有效地组织处于其发展和成长的不同阶段的分布式空间系统。简要介绍一下空间抓取技术,它基于分布式环境的并行模式匹配和高级递归移动代码,可以有效地提供任何网络协议和大型卫星星座的重要应用,特别是低地球轨道上的卫星星座。本文给出了一些基于技术的解决方案的例子,用于建立卫星之间的基本通信,从最初的、往往混乱的发射开始,到在不断增长的卫星星座中分发和收集数据,卫星之间的连接甚至不稳定且变化很快。它描述了如何在卫星之间的距离可预测的情况下组织和注册网络拓扑,以及固定网络结构如何帮助解决复杂问题。后者包括与新太空发展局的多卫星防御导向架构相关的问题,并允许有效整合其持续的地球监护观察和合作导弹跟踪和消除