摘要 — 欧洲航天工业已经制定了通用卫星开发指南,称为 SAVOIR(空间航空电子开放接口架构)。虽然目前的卫星机载网络实施符合此标准,但它们的发展机会却非常有限。新任务和新客户对机载性能的要求总是更高,这导致人们得出结论,卫星嵌入式网络必须升级。时间敏感网络(一种能够支持实时和高带宽流量的 IEEE 以太网技术)带来了一个机会。本文的目的是通过定性研究讨论 TSN 协议如何帮助集成新一代卫星的服务质量。索引术语 — 时间敏感网络 (TSN)、嵌入式网络、卫星、SAVOIR-OSRA、以太网
研究完整性通过我们的质量和客观性的核心价值以及我们对最高诚信和道德行为水平的坚定承诺来帮助通过研究和分析来帮助改善政策和决策的使命。为了帮助确保我们的研究和分析是严格,客观和无党派的,我们将研究出版物进行稳健而严格的质量保证过程;通过员工培训,项目筛查以及强制性披露政策,避免财务和其他利益冲突的外观和现实;并通过对我们的研究发现和建议的公开出版,披露已发表研究的资金来源以及确保智力独立性的政策来追求我们的研究参与的透明度。有关更多信息,请访问www.rand.org/about/research-integrity。
1,2 学生,NHVPS,班加罗尔 3 讲师,NHVPS,班加罗尔 摘要:自 20 世纪 30 年代以来,宇航服一直是太空探索不可分割的一部分。在 21 世纪,太空探索面临着比以往更多的挑战,为了满足日益增长的需求,一些公司开始考虑宇航服设计。宇航服存在许多问题,包括笨重、水循环问题、过时等 [13]。这些问题都有不同的解决方案,但这些公司的任务是将所有这些问题解决后整合到一件宇航服中。这些问题通过采用混合机械压力和聚乙烯宇航服得到了解决。与麻省理工学院的 BioSuit 类似,我们的宇航服使用机械压力来提供必要的压力,但通过使用相变材料 Rubitherm RT82,BioSuit 不再需要使用电源持续供热。聚乙烯纳米颗粒层可提供必要的辐射防护。关键词:机械压力、聚乙烯、石墨烯、碳纳米管、相变材料、凯夫拉简介:宇航服是在超地球条件下保护人体的服装。它们主要为宇航员提供压力、氧气、水、冷却、防电离辐射和微陨石的保护。现有的宇航服被称为舱外机动装置 (EMU)。SpaceX 等私人组织已于 2026-2027 年启动火星登陆计划 [4]。随着这一目标的临近,SpaceX、NASA、JPL 和其他公司一直在寻找适合这项任务的宇航服。由于太空技术的高速发展,当今世界对更好的宇航服的需求比以往任何时候都更为迫切。目前的宇航服存在许多问题,如漏水 [8]、音频/无线电通信问题、行动障碍等。解决这些问题对于宇航员的安全是必要的,尤其是考虑到未来的火星任务即将到来,而这类任务需要稍微多功能的设计。就火星而言,开发宇航服需要我们考虑到其恶劣的气候,那里辐射高,大气压只有 600-700 Pa。 [1] 我们也知道太空中的压力为零,所以深空和火星宇航服的开发有很大不同。因此,我们的目标是打造一套适用于这两种任务的多功能宇航服。文献综述:NASA xEMU https://oig.nasa.gov/docs/IG-21-025.pdf
b'Bayanat 和 Yahsat 股东批准合并成立 SPACE42 阿布扎比,2024 年 4 月 25 日 \xe2\x80\xa0 领先的人工智能地理空间解决方案提供商 Bayanat AI PLC (ADX: BAYANAT) 和阿联酋旗舰卫星解决方案提供商 Al Yah Satellite Communications Company PJSC (ADX: YAHSAT) 今天宣布,其股东已批准两家总部位于阿布扎比的实体的拟议合并。合并将创建 SPACE42,这是一家全球人工智能驱动的空间技术冠军,总部位于中东北非 (MENA) 地区,业务遍及全球。合并最初由各自的董事会于 2023 年 12 月 18 日提出,预计将于 2024 年中期生效。新实体将整合 Bayanat 先进的地理空间人工智能 (AI) 能力与 Yahsat 先进的卫星通信能力,以创造新的太空服务,对社会和经济产生重大积极影响。SPACE42 将提供更广泛的服务范围和垂直整合机会,使其能够提供差异化的价值主张、利用规模经济并提高整个价值链的盈利能力。SPACE42 候任主席 Mansoor Al Mansoori 阁下在评论这一重要里程碑时表示:\xe2\x80\x9c SPACE42 的成立体现了阿联酋明智领导层的前瞻性愿景,强调创新是进步和可持续发展的主要驱动力。通过合并该国两大航天巨头,阿联酋继续在全球范围内取得重大进展,突破该领域的界限,促进经济增长,培养世界一流人才,推进科学探索。凭借其强大的能力,新实体有望在实现《国家太空战略 2030》和《国家人工智能战略 2031》提出的宏伟目标方面发挥重要作用。SPACE42 将培育一个由人工智能驱动的生态系统,进一步改变这些领域。毫无疑问,更广泛的太空社区将从阿联酋的太空进步中受益。\xe2\x80\x9d SPACE42 候任董事总经理 Karim Sabbagh 先生表示:“Bayanat 和 Yahsat 为 SPACE42 奠定了坚实的基础,具有颠覆太空技术行业的巨大潜力。凭借两家公司的专业知识,SPACE42 为市场带来了独特的产品,将卫星通信、地理空间情报和人工智能融合在一起,开创创新解决方案。此次合并标志着股东迈出了重要一步,并强调了我们致力于提升阿联酋作为全球人工智能太空技术领导者地位的承诺。” SPACE42 无论在地区还是全球范围内都具有巨大的增长潜力,并有望成为全球最有价值的上市太空公司之一。根据最近的 2023 年财务业绩,SPACE42 的总收入为 28 亿迪拉姆,净收入为 6.39 亿迪拉姆,该公司有能力为所有利益相关者带来更高的价值,并具有产生重大协同效应的潜力。其财务状况的增强将得到以下因素的支持:
制药创新杂志 2023;12(5): 1082-1086 ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS 评级:5.23 TPI 2023; 12(5): 1082-1086 © 2023 TPI www.thepharmajournal.com 收稿日期:2023-02-01 接受日期:2023-04-06 Radhika Damuluri 助理教授,服装与纺织品系,社区科学学院,Jayashankar 特伦甘纳邦农业大学教授,拉金德拉纳加尔,海得拉巴,特伦甘纳邦,印度 Sudha babel 博士 教授,纺织与服装设计系,MPUAT 社区与应用科学学院,乌代布尔,拉贾斯坦邦,印度 通讯作者:Radhika Damuluri 助理教授,服装与纺织品系,社区科学学院,Jayashankar 特伦甘纳邦农业大学教授,拉金德拉纳加尔,海得拉巴,特伦甘纳邦,印度
本文讨论了 NASA 先进太空服压力服技术开发团队当前工作的重点、工作状态以及长期技术开发重点和活动的总结。探索舱外活动机动装置 (xEMU) 是该团队过去几年的主要工作。2022 年的 ICES 论文详细介绍了 xEMU 压力服组件的设计。本文概述了自那时以来对 xPGS 的设计更新。更值得注意的是,本文记录了使用 xPGS 执行的各种测试,以评估其在微重力和月球任务中的性能、耐用性和可接受性。概述了正在进行和计划中的 xEMU 测试和培训。讨论了 PGS 团队从 xEMU 开发和测试到支持探索舱外活动服务 (xEVAS) 供应商的过渡。此外,还将讨论与舱外活动和人类表面机动计划 (EHP)、NASA 工程安全委员会 (NESC) 和小企业创新研究 (SBIR) 计划协调开展的技术开发工作,以支持未来十年在月球表面持续开展舱外活动。最后,将简要回顾长期压力服面临的挑战和技术差距,以便了解先进压力服团队的技术投资重点和需求。
本文件中使用的首字母缩略词和缩写定义如下。 AC-10 Aerocube-10 ACCESS 可直立空间结构装配概念 ACME 带移动炮位增材制造 AFRL 空军研究实验室 AMF 增材制造设施 AMS Alpha 磁谱仪 ANGELS 本地空间自动导航和制导实验 ARMADAS 自动可重构任务自适应数字装配系统 CHAPEA 机组人员健康和表现模拟 CNC 计算机数控 DARPA 国防高级研究计划局 Dextre 特殊用途灵巧机械手 EASE 舱外活动结构组装实验 EBW 电子束焊接 EELV 改进型一次性运载火箭 ELSA-d Astroscale 演示报废服务 ESPA EELV 二级有效载荷适配器 ETS 工程测试卫星 EVA 舱外活动 EXPRESS 加快空间站实验处理 FARE 流体采集和补给实验 FDM 熔融沉积成型 FREND 前端机器人启用近期演示 GaLORE 从风化层电解中获取的气态月氧 GEO 地球静止轨道 GOLD 通用锁存装置 HST 哈勃太空望远镜 HTP 高强度过氧化物 ISA 空间组装 ISAM 空间维修、组装和制造 ISFR 现场制造和维修 ISM 空间制造 ISRU 现场资源利用 ISS 国际空间站 ISSI 智能空间系统接口 JEM 日本实验模块 JEM-RMS 日本实验模块遥控操作系统 LANCE 用于施工和挖掘的月球附着节点 LEO 低地球轨道 LH2 液氢 LINCS 本地智能网络协作系统 LOX 液氧 LSMS 轻型表面操纵系统 MAMBA 金属先进制造 机器人辅助组装 MER 火星探测探测器
简介:火星 2020/“毅力号”探测器携带一套宇航服材料,作为 SHERLOC* 校准目标的一部分 [1]。作为常规校准程序的一部分,SHERLOC 会定期分析这些材料,并生成有关其在火星表面环境中降解情况的丰富数据集。校准织物最大化 (Max-CF) 项目将有效地将 SHERLOC 数据转化为宇航服材料使用寿命的衡量标准,方法是将第二组材料暴露在火星舱中,使用 JSC 的类似 ACRONM** 仪器复制 SHERLOC 测量值,然后进行材料测试(包括拉伸测试)。这些数据可用于指导宇航服设计和/或材料开发,提高未来火星任务的机组人员安全性。这将部分解决 NASA 的战略知识差距 8(火星表面技术),该差距指出需要开发技术以“维持人类在火星表面的生活 [并] 实现人类的流动和探索” [2]。本摘要描述了整个 Max-CF 项目以及迄今为止实验室研究的进展。
目标是在 2022 年发射 Kanyini,即从项目开始大约 18 个月后。这样就有时间开发卫星平台、集成有效载荷、进行集成测试并交付给发射提供商。在开发阶段的同时,正在制定一项研究计划,以便在进入轨道后充分利用这些系统。这包括早期研究和测试,以支持未来的 SmartSat 能力演示任务,例如 AquaWatch(水质监测)和 I-in-the-Sky(灾害和气候变化管理),涉及高光谱成像和物联网通信。这项研发将确保 Kanyini 支持 SA 在立方体卫星设计和生产方面的能力持续增长。