开发、运行和探索科学、应用和技术。这些计划的主要目标是:(1)保持美国在关键太空活动中的领先地位,以便继续开发和探索太空;(2)开展研究和实验,以扩大对以下方面的了解:(a)通过长期的天体物理观测,了解天体物理现象和宇宙的起源和演化;(b)地球及其环境,以及它与太阳的动态关系;(c)通过太阳、行星和月球科学与探索,了解太阳系的起源和演化;(d)太空环境和技术,以推进生物科学知识;(3)继续探索与永久太空设施相关的要求、操作概念和技术;(4)对先进技术和系统进行适当的研究和实验,为未来的民用应用奠定基础。
2023 年 4 月,SSC 发布了其“太空运营可持续性最佳实践”(SSC 最佳实践)文件的更新版本,以更积极地解决太空环境中新出现的安全和可持续性问题。这些实践为解决太空安全问题提供了关键主题的模型框架。2023 年修订的 SSC 最佳实践改进了任务完成后运载火箭和航天器处置的具体指导,增强了信息共享指导,并增加了网络安全、可服务性、航天器异常根本原因评估以及防止故意碰撞或碎裂事件的建议。更新后的最佳实践指南和预期的太空行为规范还为协调太空运营建立了一套基础的“道路规则”。
航天器开发预算的很大一部分用于集成和测试。考虑到开发太空计划所投入的资源、恶劣的太空环境以及发射后不可能返工,发射前与任务保障相关的费用(例如地面测试)是合理的。为此,政府和行业制定了严格的地面测试标准,以确保满足测试有效性和任务保障目标。从历史上看,这些规范是为高优先级和高成本航天器的国家安全太空计划编写的,期望任务保障要求将针对优先级较低的航天器进行量身定制。随着以降低成本和提高风险承受能力为目标的太空计划的激增,需要更全面的文件来说明如何定制地面测试要求以确保与降低的任务保障期望保持一致。
谁来监管太空垃圾清理? Mahulena Hofmann * 摘要 随着大型卫星星座的出现,保护太空环境已成为当务之急。许多参与者正在开发工具,以引导太空运营商采取环保行为。其中,一些国家已将环保措施纳入其太空立法。本文概述了这些努力,重点关注制定这些措施的参与者的特点:包括欧空局在内的国际组织、各国,以及卫星运营商组织或标准组织等非国家参与者。这一发展引发了一个问题:欧盟是否也应该积极主动地开发自己的垃圾清理系统。分析得出的结论是,目前,对空间垃圾清理的有效监管较少由正式的规范制定机构进行,而是由各种非国家实体根据实际做法采用标准进行。 关键词:环境、可持续性、空间垃圾、标准化。
简介:亚轨道飞行测试是一种非常宝贵但经常被忽视的工具,可用于更快地推进太空研究和技术开发。美国宇航局的飞行机会计划利用商业飞行提供商,使用亚轨道火箭动力飞行器、飞行抛物线轨迹的飞机、高空气球和托管轨道有效载荷平台来加速太空技术的成熟。接触相关的太空环境可以以经济高效且及时的方式验证技术的功能,从而降低更长、更昂贵的任务(包括月球和火星任务)的风险。自 2011 年以来,飞行机会计划已促成超过 260 次飞行,进行了超过 870 次有效载荷测试。飞行机会团队的演讲者将重点介绍这些飞行测试如何支持技术和研究的成熟,并应用于月球和行星探索。
Smallsats行业的发展和新颖的板载仪器的新颖多样性越来越多地导致了太空机制的小型化。除了较小的尺寸之外,成本的减少和市场的时间也成为空间系统中使用的重复组件的主要目标。使用了各种新应用,步进电动机也更广泛地使用,因为它们带来了关键功能,例如使用步骤计数和开放环控制大大降低了系统的复杂性和成本。在对兼容太空应用兼容的步进电动机进行了彻底的审查之后,在尺寸范围很小的范围内,尤其是在欧洲市场上发现了重要的产品可用性。因此,在整个协调档案[1]中,欧洲航天局(ESA)希望增加与太空环境兼容的可用步进电动机家族。1。执行器选择
地面、低地球轨道及更远的地方 人类航天的下一步是重返月球和火星。几十年来,人类都没有飞越过范艾伦带。为了准备在低地球轨道 (LEO) 之外进行更长时间的人类任务,还有很多工作要做。新技术为研究和科学发现提供了机会,使人类能够安全地深入太空。使用低地球轨道上的微重力平台,例如国际空间站这个月球门户,可以利用我们国家的能力来克服各种复杂而困难的生物医学、物理科学和工程相关的挑战。美国政府对研究的战略性、富有成效和不间断的承诺对于利用太空环境推进美国科学和创新议程至关重要。微重力研究在生物学和物理科学中的重要性 生物学和物理科学中的基础微重力研究是通向创新生物学和技术突破的渠道。
摘要:鉴于 NASA 的 Artemis 计划即将在低地球轨道 (LEO) 以外执行一系列任务,并可能在月球和火星上建立基地,需要研究深空环境对生物的影响并制定保护措施。尽管自 20 世纪 60 年代以来,许多生物实验都在太空中进行,但大多数实验都是在低地球轨道进行的,而且只持续了很短的时间。这些低地球轨道任务研究了各种模型生物中的许多生物现象,并利用了广泛的技术。然而,鉴于深空环境的限制,未来的深空生物任务将仅限于使用微型技术的微生物。像立方体卫星这样的小型卫星能够使用新型仪器和生物传感器查询相关的太空环境。立方体卫星还为更复杂、更大规模的任务提供了一种低成本的替代方案,并且需要的机组人员支持最少(如果有的话)。已经有几颗立方体卫星部署在低地球轨道,但下一代生物立方体卫星将走得更远。 BioSentinel 将成为美国宇航局 50 年来第一个星际立方体卫星,也是第一个发射到地球磁层以外的生物研究卫星。BioSentinel 是一个自主的自由飞行平台,能够支持生物学并研究辐射对星际深空模型生物的影响。自由飞行器内包含的 BioSensor 有效载荷也是一种适应性强的仪器,可以对不同的微生物和多种空间环境(包括国际空间站、月球门户和月球表面)进行生物相关测量。像 BioSentinel 这样的纳米卫星可用于研究重力减小和空间辐射的影响,并可以容纳不同的生物或生物传感器来回答特定的科学问题。利用这些生物传感器将使我们能够更好地了解太空环境对生物的影响,以便人类可以安全返回深空并比以往走得更远。
图 3 中反映的跟踪物品数量的急剧增加归因于新的国家、非国家和商业航天器;进入太空的门槛降低;商业公司将数百到数千个航天器组成的大型星座(例如 Starlink);一些重大的碎片产生事件,例如 2007 年中国反卫星 (ASAT) 试验、2009 年铱星-宇宙碰撞和 2021 年俄罗斯反卫星试验,以及改进的监测能力。与此同时,太空环境和自然碎片带来的危害继续威胁着航天器,并有可能产生更多的碎片事件。这些因素综合起来,对于太空作业的安全来说,美国不仅必须知道物体和航天器在任何特定时间的位置,而且还必须知道它们是如何到达那里的、谁拥有它们、它们的潜在能力以及它们的操作员的意图。
这项挑战不仅仅关乎微重力。学生将了解太空环境的挑战,同时探索太空研究职业的真正意义。学生还将通过开发自己的太空环境挑战解决方案,将所学知识付诸实践。过去的解决方案包括使用基因组编辑技术教植物在没有重力的情况下生长、测试真菌作为太空食物来源以及利用有益细菌改善宇航员的健康。每队有多少名学生?每队有四到六名学生。学校可以有多个团队。个人申请人可能会被考虑。预期工作量是多少?每周大约两到四个小时。学生将每周参加与导师的虚拟会议,并在自己的时间内完成录制的讲座和辅导材料。