ACS3 项目是一项技术演示任务,利用可部署复合吊杆 (DCB) 项目提供的 7 米可卷起复合吊杆部署 81 平方米反射式太阳帆 [1],即图 1 所示的太阳帆系统。图 2 显示了航天器的关键元件。该项目是美国宇航局兰利研究中心和美国宇航局艾姆斯研究中心的联合项目。帆杆子系统 (SBS) 是 ACS3 航天器(12U 立方体卫星)的有效载荷。SBS 结合使用几种传统机制,以一次流畅的动作同时部署复合吊杆和轨道上的太阳帆。这些机制的设计和测试历时 5 年,在此之前,近地小行星侦察兵 (NEA Scout) 任务曾采用一种潜在的嵌入式替代设计,该设计利用了复合材料吊杆,达到了合格水平,但未被选为该任务的最终飞行设计 [2]。德国航空航天中心 (DLR) 已发表类似的较低技术就绪水平 (TRL) 工作 [3]。
太阳能航行是一种革命性的驱动航天器的方式。太阳帆(图3)使用大型,轻巧的镜面表面,以捕获从阳光下的动量,以将航天器向前推动。光由称为光子的无质量颗粒组成。光子在撞击其反射表面时将其动量(复数)转移到航天器中。就像在离子推进器中一样,每一个击中帆的光子都可以产生一个小的推力。Starshot Mission将使用太阳能航行前往我们太阳系Alpha Centauri最近的星系。
• DCB/ACS3 7 米吊杆技术可扩展至 14 米至 16.5 米的可展开吊杆长度。 • 先进复合太阳帆项目 (ACS3) 将展示 DCB 复合吊杆技术在太阳帆应用中的应用。
用于SB和相机系统的控制航空电子学(AS),用于帆部署捕获的摄像头系统以及作为飞行软件(FSW)。- NASA Langley研究中心(LARC) - ACS3 SAIL/BOOM子系统(SBS)。- AST太空移动美国 /纳米汽车美国航天器总线。- 纳米载体美国 /国外 - 分配器。- 圣克拉拉大学机器人系统实验室 - ACS3操作支持。- 火箭实验室 - 发射提供商。
LightSail 计划包括开发、发射和运行两颗私人资助的 3U 立方体卫星,旨在推动太阳帆技术的发展。第一艘 LightSail 航天器主要用于演示太阳帆部署过程,于 2015 年春季成功完成近地轨道任务。第二艘 LightSail 任务计划于 2017 年发射,主要目标是演示地球轨道上的帆控制并提高远地点。LightSail 由行星协会管理,由世界各地的会员和私人捐助者资助,是有史以来最雄心勃勃的私人资助太阳帆计划。通过展示从 3U 立方体卫星平台部署和控制太阳帆的能力,LightSail 计划推动太阳帆成为一种可行的太空小型卫星推进技术。本文概述了 LightSail 计划,描述了航天器设计,并讨论了 LightSail 1 的初始试飞结果。
4.1 围绕 L1 的 Lyapunov 轨道 围绕 L 1 拉格朗日点的初始、自然 Lyapunov 轨道的选择如图 3a 所示。这些自然
摘要太阳帆技术已被提出和开发用于太空探索,具有低启动成本,无促性剂消耗和连续推力的优势,在地球极地检测,星际探索等方面具有巨大的潜力。在过去几十年中,太阳帆的发展在结构设计,制造,材料,轨道转移和可行性控制方面取得了重大进展,这对天文学,物理学和航空科学做出了有意义的贡献。在当前的太阳帆任务中,已经实现了太阳辐射压力(SRP)推进和星际转移的技术突破。但是,仍然存在许多挑战,需要解决问题。本文试图从关键技术的角度总结太阳能帆船在太空任务中的研究方案和潜在应用,以便为该领域的研究人员提供整体观点。提供了太阳帆系统设计的关键技术的分析。最后,讨论了太阳帆船的挑战和前瞻性发展。2023代表中国航空和宇航学会的Elsevier Ltd.的生产和主持。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
激光测振有助于验证游丝空间结构 美国宇航局正在开发大型超轻型结构,通常称为游丝空间结构。这些结构面积大,面密度小,这大大增加了地面测试的复杂性,因为地面操作界面和重力负荷会变得繁琐。激光测振已被证明是一种验证这些游丝结构结构特性的关键传感技术,因为它具有精度高、范围广和无接触的特性。 简介 美国宇航局多年来一直在开发游丝空间结构,以降低发射成本并利用特定概念的独特功能。例如,碟形天线(图 1)目前正在开发中,因为它们可以在太空中充气至 30 米大,然后刚性化以实现高数据速率通信。游丝结构的另一个例子是太阳帆,它是一种经济高效的无推进剂推进源。太阳帆跨越非常大的区域,以捕获光子的动量能量并利用它来推动航天器。太阳帆的推力虽然很小,但却是连续的,在整个任务期间都不需要推进剂。材料和超轻薄薄结构方面的最新进展使得大量有用的太空探索任务能够利用太阳帆推进。在 NASA 空间推进办公室 (ISP) 的指导下,ATK 空间系统、SRS 技术和 NASA 兰利研究中心的团队开发并评估了一种可扩展的太阳帆配置(图 2),以满足 NASA 未来的太空推进需求。在地面上测试太阳帆给工程师带来了三大挑战:测量比纸还薄的大面积表面;环境条件下的空气质量负荷很大,因此需要进行真空测试;高模态密度需要将表面划分为更易于管理的区域。本文将重点介绍在 NASA Glenn Plum Brook 设施的空间动力设施 (SPF) 真空室中完成的 20 米太阳帆概念动态测试的独特挑战。真空测量 Polytec 扫描激光测振仪系统 (PSV-400) 是用于测量振动模式的主要仪器。激光扫描头被放置在加压罐内,以保护其免受真空环境的影响(图 3)。罐内有一个窗口端口,激光从该窗口端口射出,强制空气冷却系统可防止过热。开发并实施了扫描镜系统 (SMS),该系统允许在真空室内从超过 60 米的距离对帆进行全场测量。SMS(图 3)安装在真空室设施顶部附近,位于测试物体上方,而测振仪头安装在
1 首席研究员,ACS3 项目,结构动力学分会,AIAA 高级成员。2 首席研究员,DCB 项目,结构动力学分会,AIAA 成员。3 研究航空航天工程师,结构动力学分会,AIAA 成员。4 机械设计工程师,分析服务与材料公司,结构动力学分会。5 研究航空航天工程师,结构动力学分会,AIAA 成员。6 材料科学家,国家航空航天研究所,先进材料与加工分会。7 SBS 总工程师,结构动力学负责人,结构和热系统分会。8 研究航空航天工程师,结构动力学分会。9 SBS 项目经理,空间技术和探索理事会。10 SBS 系统工程师,系统工程和工程方法分会。11 项目经理,ACS3 项目。12 项目系统工程师,ACS3 项目。13 研究航空航天工程师,DLR 复合结构与自适应系统研究所。 14 德国航空航天中心复合结构与自适应系统研究所研究航空航天工程师。15 航空航天工程学院助理教授。