轨道设计:根据以下因素设计不同的轨道,例如(太阳同步轨道 - 重复地面轨迹轨道 - 临界倾斜轨道):高度、太阳高度角和滚动角,无推进系统或有推进系统。结果是:确定当地平均太阳时、覆盖面积、上升节点当地太阳时的变化、轨道衰减和脱轨卫星。
2020 年 12 月发布的《能源白皮书 2》阐述了政府对如何实现低成本、净零排放的电力系统的观点,该系统很可能主要由风能和太阳能发电组成,同时确保系统可靠。这意味着间歇性可再生能源需要辅以在无风或无太阳时提供电力或减少需求的技术。如今,这包括核能、具有碳捕获和储存功能的天然气以及低碳氢气发电。系统灵活性可以通过越来越多样化的技术来提供,包括电池的短期存储以及抽水蓄能等更长时间的存储技术。需求侧响应、互连器和提供可根据需要调整的峰值容量的短期可调度发电也在提供更大的系统灵活性方面发挥着作用。
太阳能电池是实现非核太阳系探索的重要电源。当看到太阳时,太阳能电池为太空飞行器及其有效载荷提供恒定的可再生能源,使其能够持续飞行到太阳系的外围。最先进的 (SOA) 太空太阳能电池阵列使用基于 III-V 化合物和锗的三结太阳能电池。然而,这些电池在辐射暴露下会显著退化,需要厚厚的盖玻片进行屏蔽。自从钙钛矿首次被确定为可行的光伏材料以来,人们已经对钙钛矿太阳能电池 (PSC) 的空间应用进行了大量研究。1–12 初步研究表明,新兴的超薄、柔性和轻质钙钛矿太阳能电池具有天然的抗辐射性能,11–17 有可能使高比功率 18 太阳能电池阵列设计用于高辐射和深空环境中的发电。此外,所需材料的低成本意味着 PSC 具有成本效益。19
Landsat 诞生于二战后的研究、工业和工程领域,是监测地球陆地面积的先驱。Landsat 最初被命名为“ERTS”(地球资源技术卫星),在卫星数据收集方面实现了多项“第一”:首次从太空平台获取数字编码的地球数据、首次在同一地方太阳时以固定间隔重复拍摄的场景图像、首次在多个光谱带中以足够的几何保真度对地面进行成像,从而可以对这些通道的响应进行有意义的比较。聪明的用户从数据中收集了大量信息,并获得了全球视野。农业清单、精确地图、地质线分类和灾害损失评估也随之而来。完全依赖个人在地面上徒步走遍每个方格并目测每片种植地以及依靠飞机飞行有限航线的时代已经一去不复返。我们怀着怀旧之情回忆那些日子,但并不后悔。
注意 使用远程控制产品时,可能会挑选出并测量无关目标。注意事项:在远程控制模式下测量时,请务必检查结果的合理性。注意 将产品指向太阳时要小心,因为望远镜的功能相当于放大镜,可能会伤害您的眼睛和/或导致产品内部损坏。注意事项:请勿将产品直接指向太阳。警告 在动态应用(例如放样程序)期间,如果用户不注意周围的环境条件(例如障碍物、挖掘或交通),则有发生事故的危险。注意事项:产品负责人必须让所有用户充分了解存在的危险。警告 工作现场固定不充分可能导致危险情况,例如在交通、建筑工地和工业设施中。注意事项:始终确保工作现场得到充分保护。遵守有关安全和事故预防以及道路交通的规定。警告 如果产品使用的配件未正确固定,并且产品受到机械冲击(例如撞击或掉落),则产品可能会损坏或人员受伤。注意事项:设置产品时,请确保配件正确调整、安装、固定并锁定到位。避免使产品受到机械应力。
背景。微粒形式的水冰是彗星中最常见的挥发性物质,在正确模拟彗星活动之前,必须了解其接近太阳时的行为。目的。为了评估颗粒状水冰的特性,我们研究了其在低温高真空环境中光照下的演变。方法。我们制作了一个由微米级颗粒组成的水冰样本,将其放置在热真空室内,并将其暴露在高强度可见光/近红外 (VIS / NIR) 照明下。由于冰的 NIR 波段内的能量吸收,样品局部加热,导致靠近表面的蒸发。使用秤测量辐照样品的总质量损失,并用红外摄像机记录表面温度。此外,我们使用多台摄像机观察表面变化和喷射出的固体颗粒。结果。我们从空间分辨的表面温度中推导出由于水冰升华而造成的质量损失。这种质量损失占总质量损失的 68%-77%。剩余部分(23% 到 32% 之间)的质量以固体颗粒的形式喷出,可以用肉眼看到。结论。水冰颗粒的自我喷出可以用一个几何模型来解释,该模型描述了样品冰成分的升华,同时考虑了水冰颗粒的尺寸分布和样品的体积填充因子 (VFF)。根据该模型,当固体冰颗粒(或它们所属的颗粒簇)由于较小的连接冰颗粒蒸发速度更快而与样品失去接触时,就会发射固体冰颗粒。我们讨论了该过程与彗星尘埃活动的可能相关性。
摘要 — 近几年来,低地球轨道 (LEO) 卫星的数量急剧增加。它们数量众多且轨道低,几乎可以在地球上的任何地方与卫星进行低延迟通信,高速卫星间激光链路 (ISL) 使卫星之间能够快速交换大量数据。随着 LEO 卫星计算能力的增长,它们正逐渐成为通用计算节点。在 3D 连续体中,地球上的云和边缘节点与太空中的卫星结合成一个无缝计算结构,工作负载可以在上述任何计算节点上执行,具体取决于它在哪里最有利。然而,在以大约 27,000 公里/小时的速度移动的 LEO 卫星上进行调度需要选择对所有数据源(地面和可能的地球观测卫星)延迟最低的卫星。面对太阳时,机载硬件的散热是一项挑战,工作负载不能耗尽卫星的电池。这些因素使得满足 SLO 比在边缘-云连续体(即仅在地球上)中更具挑战性。我们提出了 HyperDrive,这是一种专为 3D 连续体设计的无服务器功能的 SLO 感知调度程序。它根据功能的可用性和满足工作流的 SLO 要求的能力,将功能放置在云、边缘或空间计算节点上。我们使用具有高地球观测数据处理要求和严格 SLO 的野火灾害响应用例来评估 HyperDrive,结果表明,它能够设计和执行此类下一代 3D 场景,并且网络延迟比最佳基线调度程序低 71%。索引术语 — 无服务器计算、调度、3D 连续体、轨道边缘计算、LEO 卫星、SLO