太阳能妥协是21世纪最重要的网络攻击之一,不是因为它违反了一个组织,而是因为它引发了更大的供应链事件,影响了全球成千上万的组织。归因于先进的持续威胁(APT29)威胁组,此攻击利用了复杂的恶意软件工具来渗透高调实体。本文提供了攻击中使用的四个主要恶意软件变体的详细分析:Sibot,Raindrop,Goldmax和Goldfinder。建立了一个受控的环境,以研究每种恶意软件的行为,重点是实现持久性,横向运动和逃避检测的技术。这些发现有助于增强威胁情报,并提供有关改善防御类似攻击的见解,强调采取早期措施检测和防止先进的持久威胁的重要性。
摘要- 太阳能光伏系统以取之不尽、用之不竭和对环境无害而闻名,已被广泛用于发电。太阳能光伏的成本竞争力可能会变得更加明显,特别是与传统燃料价格的持续上涨和光伏组件价格的快速下降相比。此外,印度的政策有利于太阳能项目的发展。但太阳能光伏具有间歇性的特点。当风速超过切入速度时,风车就会发电。风的动能被捕获,并通过涡轮机和发电机组的应用,将其转化为有用的电能。这种发电厂的能量输出取决于风速。建议的方案将太阳能光伏和风车结合起来,以提高电力供应的可靠性。由于太阳能光伏和风能都是间歇性的,因此需要放置电池组来实现供电的可靠性。该系统以独立模式运行。从各种研究中可以看出,在列城、拉达克地区,风能和太阳能发电相辅相成。在夏季或晴天,太阳能光伏发电占发电量的较大份额,而在冬季或阴天,风车将提供大部分电力。满足负载需求后的多余电力将存储在电池组中,当太阳能光伏发电和风车发电的联合运行无法满足负载需求时,将利用存储的能量。所提出的方案评估了此类方案的性能,并旨在优化系统。
发展了一种通过测量近火星空间中氢能中性原子(H-ENA)反演太阳风参数的算法。假设H-ENA是由太阳风中的质子与外大气层中性子发生交换碰撞而产生的,在磁流体力学(MHD)模拟太阳风与火星相互作用的基础上,建立了H-ENA模型,研究了H-ENA的特性。结果表明,太阳风H-ENA与太阳风一样,是高速、低温的粒子束,而磁鞘H-ENA速度较慢、温度较高,能量分布较广。假设太阳风H-ENA通量服从麦克斯韦速度分布,高斯函数最适合拟合太阳风H-ENA通量,由此可以反演太阳风的速度、密度和温度。进一步基于H-ENA模型模拟的ENA通量研究表明,反演太阳风参数的精度与ENA探测器的角度和能量分辨率有关。最后,利用天问一号任务的H-ENA观测数据验证了该算法。反演后的上游太阳风速度与原位等离子体测量结果接近。我们的结果表明,从H-ENA观测数据反演的太阳风参数可以作为火星空间环境研究数据集的重要补充,因为火星空间环境研究缺乏对上游SW条件的长期连续监测。
摘要 磁化的太阳风在火星周围驱动着一个电流系统,维持着火星的感应磁层。太阳风还将能量传递给大气离子,造成持续的大气侵蚀,对火星的演化历史产生了深远的影响。在这里,我们使用基于图形处理单元 (GPU) 的混合等离子体模型 Amitis 首次重现了垂直于太阳风流动方向的行星际磁场下净电流和离子流的全局模式。得到的电流分布与观测结果相符,并揭示了更多细节。利用之前用相同模型表征的电场分布,我们首次计算了火星上整个等离子体和不同离子种类的能量传递率的空间分布。我们发现:(1)太阳风动能是驱动火星感应磁层的主要能量来源;(2)激波太阳风的能量通量从磁赤道平面流向感应磁尾中的等离子体片;(3)弓形激波和感应磁层边界都是发电机,等离子体能量从这里转移到电磁场;(4)行星离子充当负载并从电磁场中获取能量。最强烈的负载区域是行星离子羽流。本研究揭示的能量转移率的一般模式在感应磁层中很常见。它随上游条件的变化可以为观测到的离子逃逸变化提供物理见解。
在许多磁场的主要阶段,太阳能电池数量很低,IMF幅度很大。在这些条件下,电离层势会饱和,并且对IMF幅度的进一步增加变得相对不敏感。的日子合并速率和电势对太阳风密度敏感。这应该导致极光电流的强度与太阳风密度之间的相关性。在这项研究中,我们提供了314个中度至强风暴的样本,并研究了DST指数与电离层中消散的能量之间的相关性。我们表明,对于较低的马赫数,此相关性降低。我们还表明,在这些风暴期间,与较低的马赫数风暴的电离圈指数与太阳风的地球效能相关。
摘要。本文讨论了信息和通信技术在研究航空事故原因中的应用,这些事故是由航空运营商因内部和外部影响而导致的失误造成的。本文提出了一种模型和技术,包括之前开发的综合信息通信技术(初始专业人员选择和日常轮班前检查)、基于云的开放访问(NASA 和 ICAO)和实时操作(空中交通管制员和飞行员控制)信息通信技术,数据存储在一个数据库中。对提出的信息通信技术进行了检查,以研究一年观察期内太阳风参数(速度和密度)对航空事故和事故发生的影响。将该研究的结果与另一个太阳活动时期的相应结果以及在实验室条件下获得的数据进行了比较,以研究在太阳风影响下的认知测试表现。
摘要 基于四颗磁层多尺度航天器穿越地球弓形激波期间的高时间分辨率数据,评估了无碰撞等离子体激波前沿等离子体熵的演变和等离子体能量重新分布的过程。将离子分布函数分离为激波附近具有不同特征行为的群体:上游核心群体、反射离子、回旋离子、激波附近捕获的离子和下游核心群体。分别确定了这些群体的离子和电子矩值(密度、体积速度和温度)。结果表明,随着静电势的增加,太阳风核心群体体积速度主要在斜坡处减慢,而不是像假设的那样在足部区域减慢。反射离子群体决定了足部区域的性质,因此足部区域的质子温度峰值是不同离子群体相对运动的结果,而不是任何离子群体热速度的实际增加。评估的离子熵表明,激波的整个过程中出现了显著的增加:离子熵的增强发生在激波前沿的脚部和斜坡处,反射离子与上游太阳风离子一起出现,各向异性不断增加,产生了离子尺度静电波的爆发。激波的电子熵没有显示出显著的变化:电子加热几乎是绝热的。统一天文学词库概念:太阳风 ( 1534 ) ;行星弓形激波 ( 1246 )
一维粒子模拟 (PIC) 用于分析新视野号绕冥王星太阳风 (SWAP) 仪器在距离太阳约 34 天文单位处观测到的行星际激波上游区域测得的能谱。使用单个种群模拟不同的太阳风离子 (SWI) 和拾取离子 (PUI) 种群,我们可以清楚地识别出每个种群对全球能谱的贡献。强调了激波前沿倾斜度在沿磁场流回远离前沿的上游区域的 PUI 形成中的重要作用。在本模拟中可以很好地恢复 SWAP 实验测得的能谱。详细分析表明:(1) 能谱的最高部分主要由回流的 PUI-H + 和 PUI-He + 形成; (2) 能谱的中间部分由太阳风 SW-H + 和 SW-He 2+ 入射离子组成,这些离子叠加在 PUI-H + 粒子群上,(3) 低能范围由入射 PUI-H + 组成。使用 PUI-H + 粒子群的初始填充壳分布(而不是零厚度壳),可以提高实验结果与模拟结果之间的一致性,因为这会强烈影响光谱的低能部分。这意味着 PUI-H + 离子在日光层中首次被拾取后,有足够的时间扩散到壳分布并填充壳分布,这表明随后的冷却对全球能谱有重要影响。