对返回的月球样品的分析表明,总碳含量在50至200 ppm不等,来自土著和外部来源(例如太阳风和微观元素)的贡献[2-4]。在月球样品中发现的碳种类中,二氧化碳(CO 2)是最丰富的碳(CO 2),占总碳的约10–30%[3]。值得注意的是,在大多数阿波罗样品中对CO 2的检测并非仅与火山活性相关。相反,它的存在与岩石晶粒的大小密切相关,表明月球土壤中CO 2的主要来源是太阳风[2,5]。相比之下,其他气态物种(例如一氧化碳(CO)和甲烷(CH 4))仅出现在痕量中,强调CO 2作为主要的挥发性相[2,4]。剩余的农历碳库存主要是元素形式,反映了月球的减少表面环境[3]。
作为太空创新领域的领导者,该客户经常与 NASA 合作开发太空探索技术和仪器,包括用于监测和记录某些太空活动的仪器。其中一个例子包括界面区域成像光谱仪 (IRIS) 任务的航天器和仪器。IRIS 由洛克希德马丁公司在帕洛阿尔托的工厂设计和建造,并由洛克希德马丁公司在挪威航天局的支持下运营。该任务的目标是通过追踪等离子体和能量流入日冕和日光层来进一步了解太阳与地球之间的联系,此前,日冕和日光层的观测和研究一直颇具挑战性。IRIS 使团队能够获得高分辨率的太阳色球层紫外线光谱和图像,特别是与太阳风或太空天气相关的图像。自 2013 年发射以来,IRIS 已成功绕地球飞行了约 50,000 圈,收集了许多有用的图像。
2022—2024年,中国空间科学计划、深空探测计划和载人航天计划进展迅速。中国科学院2011年启动实施的空间科学战略性先导计划两期均取得了丰硕的科学成果,其中一期包括暗物质粒子探测器(DAMPE)、实践十号(SJ-10)、空间量子实验(QUESS)和硬X射线调制望远镜(HXMT),二期包括太极一号(太极计划首次技术演示任务)、引力波高能电磁对应体全天空监测器(GECAM)、先进空间太阳天文台(ASO-S)、爱因斯坦探测器(EP)、太阳风磁层电离层链接探测器(SMILE)。中国首个综合性太阳探测任务——先进空间太阳天文台(ASO-S)和致力于软X射线时域天文学探测的爱因斯坦探测器(EP)分别于2022年10月9日和2024年1月9日发射。中国与欧空局的联合任务——太阳风磁层电离层链接探测器(SMILE)计划于2025年底发射。全球首颗助力联合国2030年可持续发展议程的科学卫星——SDGSAT-1已运行两年半,为推动国际可持续发展目标实施提供了宝贵数据。主要研究伽马暴的中法联合任务天基多波段可变目标监测器(SVOM)于2024年6月22日发射,轨道高度约635公里。未来还将围绕极端宇宙、时空涟漪、日地全景、宜居行星、太空生物和物理科学五大科学主题开展新的科学任务。在月球与深空探测方面,嫦娥六号探月任务于2024年6月25日重返大气层并成功着陆地球,完成从月球背面采集首批样本的历史性使命。在载人航天领域,中国空间站已于2022年底全面部署,进入应用发展阶段。开展了空间生命科学与生物技术、空间材料与器件、空间材料与器件、空间材料与器件等多个领域的科研项目。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
2022 年 3 月,美国宇航局的帕克太阳探测器将完成第 11 次近距离接近太阳,穿越地球与太阳表面之间近 94% 的距离。这一历史性发现任务的目标是了解控制恒星风产生和动态的基本物理学。为了完成任务,帕克太阳探测器在近太阳空间测量粒子、电场、磁场和光子,同时忍受极热、极冷并以前所未有的速度行进。本次演讲将讨论激发帕克太阳探测器任务的科学问题,以及航天器携带的仪器,包括科罗拉多大学大气和空间物理实验室 (LASP) 对 FIELDS 仪器的贡献。帕克太阳探测器的主要科学成果将得到介绍,包括太阳双极电场的量化、新型等离子波和不稳定性发现、阿尔文表面的穿越、将太阳表面磁结构追踪到太阳风的努力以及太阳处理行星际尘埃的新突破。最后,随着帕克太阳探测器越来越接近太阳表面,本演讲将讨论其未来发展。
月亮是研究深空血浆和能量颗粒环境的独特位置。在其围绕地球的大部分轨道上,它直接暴露于太阳风中。由于没有全局固有磁场和碰撞气氛,太阳风和太阳能颗粒几乎没有偏离或吸收而到达,并直接影响其表面,与月球雷隆和脆弱的月球外层相互作用。到达月球表面的能量颗粒可以吸收或散射,也可以通过溅射或解吸从月球岩石中去除另一个原子。同样的现象也发生在银河宇宙射线中,它呈现典型的行星际空间的通量和能量光谱。在5 - 6天的每个轨道中,月亮越过陆地磁层的尾部。然后,它提供了在陆地磁尾等离子体环境以及大气从地球电离层中逃脱的可能性,以重离子的形式加速并向下流动。月球环境提供了一个独特的机会,可以研究太阳风,宇宙射线和磁层与表面,直接地下以及未磁性行星体的表面外观的相互作用。
在地球低沉的大气中,飓风的大小巨大,螺旋风和巨大的雨水/降雨/降水,这是破坏性的。但是,在地球上层大气中尚未发现类似于赫里斯的干扰。在这里,我们报告了低太阳能和其他低地磁活性期间极地电离层和磁层中的持久空间飓风。该飓风显示出较强的圆形水平等离子体流,带有剪切,几乎零流动中心以及由强烈的电子沉淀引起的,由与强烈的向上磁性电流相关的电流相关的强烈电子沉淀引起的。在中心附近,沉淀电子被基本上加速至约10 keV。尽管条件极为安静,但飓风将大量的能量和动量沉积赋予电离层。观察结果和模拟表明,在北向北向磁场的几个小时内,太空飓风是由稳定的高纬度瓣磁重新连接和电流连续性产生的,太阳磁场和太阳风密度和速度非常低。
背景。以剪切流为特征的磁化等离子体存在于许多自然环境中,例如地球磁层顶和太阳风。所涉及等离子体的无碰撞性质需要动力学描述。当剪切层的宽度为离子尺度数量级时,可以采用混合 Vlasov-Maxwell 方法。目的。这项工作的目的是在混合 Vlasov-Maxwell 描述中推导出具有平面剪切流的磁化等离子体稳态配置的显式形式。考虑两种配置:第一种是相对于体积速度倾斜的均匀磁场,第二种是均匀幅度可变方向的磁场。方法。我们通过结合单粒子运动常数获得了稳态离子分布函数,这是通过研究粒子动力学得出的。考虑背景电磁场的局部近似,通过分析推导出关于分布函数形式的初步信息。然后建立了数值方法来获得一般分布的解。结果。我们确定了显式分布函数,使我们能够获得密度、体积速度、温度和热通量的分布。还评估了分布函数中的各向异性和无磁性。在均匀斜磁场情况下检查了数值模拟过程中解的平稳性。结论。这里考虑的配置可以用作开尔文-亥姆霍兹不稳定性模拟中地球磁层顶的模型。
摘要:中国科学院国家空间科学中心是中国空间科学的门户,统筹管理全国科学卫星任务,是中国第一颗人造卫星“东方红一号”的诞生地。在60多年的发展历程中,国家空间科学中心牵头实施了中国第一个科学驱动的航天任务“双星计划”,并陆续实施了暗物质粒子探测器(悟空号)、量子实验卫星(墨子号)、硬X射线调制望远镜(慧马号)、太极一号、空间太阳天文台(夸父号)、爱因斯坦探测器(EP)等一批国家空间科学战略优先项目一、二期科学任务。目前,我国空间科学卫星系列已经基本形成,取得了丰硕的科研成果。未来,中欧联合发射的太阳风磁层电离层链路探测器(SMILE)也将于2025年发射。此外,刚刚发布的《国家中长期空间科学发展规划(2024-2050)》是我国首部国家级规划,确定了五大科学主题。围绕这些主题展开的一系列未来科学任务,将深化人类对宇宙的科学认识。
尽管通过结合多种可再生能源 (RES) 实现互补是增加 RES 份额的重要方法,但在支持能源转型的政策处方中,它往往被忽视。互补可以由多个参与者实施,但很少有人关注哪些参与者参与以及他们的角色。进行了系统回顾,概述了关于多种 RES 组合和多个相关参与者参与这一主题的学术文献现状。样本包括 78 篇文章,使用一系列方法来分析风能、太阳能、生物能源、水力、地热能和海洋能的不同组合,以及传统、新能源和支持能源参与者的组合。研究包括情境化(特定位置)基于代理的分析、技术经济、经济、商业模式和定性分析,以及非情境化评论、基于代理的分析和优化模型。全球范围内,不同学科在不同背景下、在各种地理范围内研究多参与者互补性。大多数研究都集中在太阳风能上,尽管在情境化研究中发现了更多样化的 RES 组合。新参与者通常与传统系统参与者一起参与。需要更多地关注支持参与者。研究结果强调,除了结合多种 RES 的技术优势之外,还需要进一步研究,以探索各种参与者的作用。这可以通过在研究中纳入更多背景来实现,例如,使用大量现有的数据和研究,并纳入更大范围的 RES 组合,并纳入更多相关参与者的观点。