简介:对月球挥发物的研究可以提供有关陆地行星,尤其是地球的起源和演变的重要见解。尽管地质过程已经破坏了地球早期的早期结构证据,但月亮仍保留了较早时期的信息。此外,被困在月球杆上的挥发物可以提供从各种来源(包括彗星,小行星,太阳风相互作用和内部量大)的太阳系挥发物的前提记录。尽管Artemis计划和商业月球支付服务(CLP)提供了前所未有的研究,以研究月球并获得有关我们太阳系的见解,但这些计划下的任何降落都将释放大量的非本地票价。这些挥发物可以在Lunar表面上运输,并沉积在冷陷阱中,影响了本地挥发物的测量结果1。从着陆器羽流中的结果物种之一是水蒸气,无论是在数量及其与月球岩石的相互作用方面。多项研究模拟了水分子从着陆器排气到月球岩石的吸附,并在时间2-4的时间内将其亚分子解吸到月球层。但是,我们没有太多的实验数据来验证假设并证实了这些模型中的任何一个。高度敏感,对挥发物的原位测量对于更好地理解羽状表面相互作用(PSI)和着陆器产生的挥发物的影响。
图1:充满活力的辐射环境。(a)宇宙银河辐射是银河事件的重复,例如发射γ-射线和高能量颗粒的超新星explosions和脉冲星(83.3%P +,13.72%↵,2%β,0.98%重量IONS)。(b)深空的另一个来源是宇宙太阳辐射,它发出p +,β,X射线和γ射线;这些组件的浓度和能量因太阳能活动(太阳风,太阳能和冠状质量弹出)而异。(c) The earth's magnetic field and atmosphere play a significant role in limiting some of these parti- cles reaching the surface of the earth where they are trapped inside the Van Allen outer magnetic belt (it consists mainly of β ), whereas the other cosmic particles interact with atmospheric par- ticles producing β , p + , and a small portion of heavy ions and trapped inside the inner belt.因此,可以将范艾伦带分类为位于地球轨道区域的辐射环境。(d)然而,某些宇宙辐射仍然可以通过这些皮带,并与地球大气分子(例如氧和氮)产生N 0,P +和PIONS(⇡)反应; ⇡最终β对(E -E +)和中微子。除了这些颗粒外,γ射线还从雷暴期间从大气中发出。(e)二元活性材料,例如铀,th及其衍生物,是另一种发射的陆层来源,它发出了↵,β和γ射线。β表示E-或E +颗粒ratiation,并且有些是核反应的无需副产物(↵,β,β,n0和γ-ray),这些副产品由动力工厂FA-a-lations产生。每种辐射的贡献都取决于每个区域中所描绘的电子的位置,有关详细信息,请参见补充表1和2。
摘要。普通微分方程的多项式和非分解系统的二二次化在多种学科中,例如系统理论,流体力学,化学反应建模和数学分析。二次化揭示了模型的新变量和结构,该变量和结构可能更容易分析,模拟,控制并提供了方便的学习参数化。本文提出了新的理论,算法和软件功能,用于非自治odes的二次化。我们根据输入函数的规律性提供存在结果,因为可以通过二次化获得二次双线系统的情况。我们进一步发展存在结果和一种算法,该算法概括了具有任意维度的系统的二次化过程,该系统在尺寸增长时保留了非线性结构。对于此类系统,我们提供维度不合时宜的二次化。一个示例是半消化的PDE,当离散化大小增加时,非线性项在象征性上相同。作为这项研究实际采用的重要方面,我们将QBEE软件的功能扩展到具有任意维度的ODES和ODES的非自治系统。我们提供了以前在文献中报道的ODE的几个示例,在此,我们的新算法找到了比先前报道的提升转换的四倍体ode系统。我们进一步强调了二次化的重要领域:减少阶模型学习。太阳风示例突出了这些优势。该区域可以通过在最佳提升变量中工作而受益匪浅,其中二次模型提供了模型的直接参数化,这也避免了非线性项的额外超重还原。
在空间风化的样品中应用计算机视觉算法来自动化太阳粒子轨道分析。K. Heller 1,J。A. McFadden 1,M。S. Thompson 1。 1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。 简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。 尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。 这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。 通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。 对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。 直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。 但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。 这两个模型在结构上是相同的,但在培训数据上却有所不同。A. McFadden 1,M。S. Thompson 1。1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。这两个模型在结构上是相同的,但在培训数据上却有所不同。在这里,我们应用这些ML技术来开发一个原型自动化程序,该程序可以自动检测和分析TEM图像中的SEP轨道,从而使未知样本中的SEP轨道更有效,更准确地注释。方法:机器智能程序(“模型”)旨在查找和计算提供的TEM图像中的所有SEP轨道,包括潜在的微弱或“隐形”轨道。由于轨迹而言,由于主要是与背景材料不同的强度线段的线段,该模型旨在识别线性强度差异的区域。两种单独的型号经过训练以提高性能 - 一种在较暗的背景(LOD)上搜索较轻的曲目,而一种搜索较轻的背景(DOL)上的较暗轨道(DOL)。拆分模型的决定在很大程度上旨在改善训练时间和模型性能,因为示例往往由LOD或DOL轨道组成。因此,将模型拆分可改善训练时间并减少处理时间,因为训练集和应用的差异减少为更简单,较小的模型提供了空间。此外,这使该模型可以应用于两种不同类型的扫描TEM(STEM)成像模式:深色场(DF),其中SEP轨道显得比周围的晶体更明亮,而明亮场(BF),其中SEP轨道显得比周围的晶体更暗。由于计算机以抽象的结构可视化数据,分析是按像素度量进行的,而不是与测量相关的
2021 年 5 月 17 日至 21 日,由空间科学研究所 (SSI) 数据科学中心 (CDS) 主办、美国国家科学基金会 (NSF) 赞助的完全虚拟会议“统计方法和机器学习在空间科学中的应用”举行 (http://spacescience.org/workshops/mlconference2021.php)。此次活动汇集了空间科学各个学科(如太阳物理学和高空物理学、行星和系外行星科学、地质学、天体生物学和天文学)和行业的专家,以利用统计学、数据科学、人工智能 (AI) 方法和信息理论方面的进步,旨在利用这些领域的海量数据改进分析模型及其预测能力。这次多学科会议为行业专业人士、高级科学家、早期职业研究人员和学生提供了一个充满活力的论坛,让他们使用各种高级统计学技术和方法展示他们的最新成果,以增强他们对人工智能最新趋势的了解,并参与未来合作的平台。会议涵盖了广泛的研究主题,例如高级统计方法、深度学习和神经网络、时间序列分析、贝叶斯方法、特征识别和特征提取、结合机器学习(ML)技术的物理模型和代理模型、空间天气预报和应用人工智能的其他领域的研究主题、模型验证和不确定性量化、空间等离子体中的湍流和非线性动力学、物理信息神经网络、信息论以及数据重建和数据同化。自 20 世纪 90 年代以来,人工智能方法已经应用于日地物理领域的各种问题( Newell 等,1991 ;Lundstedt,1992 ;Lundstedt,1996 ;Wintoft 和 Lundstedt,1997 ;Wing 等,2005 ;Lundstedt,2006 )。其中包括极光粒子沉降的分类、太阳风速度的预测、地磁扰动和行星 K 指数 K p ,用于表征
了解空间辐射环境对于设计和选择用于空间应用的材料和部件至关重要。这种环境不仅以太阳的电磁辐射为特征,而且还以带电粒子为特征,带电粒子分为太阳风、太阳高能粒子 (SEP) 和银河宇宙射线 (GCR)。特别是对于材料工程和鉴定测试,需要从 keV 到 GeV 的粒子能量的微分和积分谱。到目前为止,已经有各种各样的模型可用,但很难保持概览。尽管欧洲空间标准化合作 (ECSS) 标准包括有关如何研究粒子辐射的说明,但它并未提供整体视图。本文将为那些需要全面概述的人提供支持,并提供有关质子辐射谱的全面信息,这些信息可能用于从任务分析到材料和组件设计以及鉴定测试等空间工程任务。检查了可公开访问的平台 OLTARIS、SPENVIS 和 OMERE,以获取可用的质子光谱。例如,考虑了第 23 个太阳周期的粒子辐射,该周期涵盖了 1996 年至 2008 年。可用模型的一个共同缺点是它们仅限于 MeV 范围。特别是当材料直接暴露在太空环境中时,低能粒子(特别是 keV 范围)会引起人们的高度关注,因为这些粒子会将所有能量转移到材料上。因此,使用了额外的数据源,以便将通常被忽略的低能质子纳入派生光谱中。数据被转移到通用单位集,最终可以进行比较和合并。这包括对最常见模型的比较,包括数据基础、适用性和可访问性。因此,拟合了广泛而连续的光谱,其中考虑了所有不同模型及其不同的能量和通量。每一覆盖年份都用拟合光谱表示,包括适用的置信度。针对太阳活跃和安静时期,提供光谱。
如果一个不知名的亿万富翁在十岁生日之后选择了您的长子女儿成为火星第一个人类定居点的一部分,该怎么办?发现,由于连续暴露于太阳风,宇宙射线,电离辐射的其他来源和对女孩的发育过程以及细胞和组织分化有害的电离辐射来源,因此发现火星上缺乏磁层会导致女孩组织中的细胞病变大量率?您是否同意,知道低重力吸引力会导致不同生理系统和她的解剖结构(从肌肉骨骼系统到神经,循环系统或呼吸系统)的不可逆变形吗?这是纽约社会心理学家乔纳森·海特(Jonathan Haidt)的挑衅性思想实验,开始了他的论文《焦虑一代》。这是一种雄心勃勃且高度致力于识别在最近的精神疾病发生率增加(主要是焦虑抑郁症,但也令人上瘾的行为,饮食失调,人格障碍,人格障碍,精神分裂症等)的基础上的基本原因。Z世代成员之间虽然我们年轻人中的痛苦海啸似乎已经达到了自2019年大流行以来的失控增长率,在此过程中引起了父母和老师的深刻和深刻的理解,他们见证了这种疾病及其症状(Anhedonia,anhedonia,anhedonia,self-Injury,self-Injury,selfsinalia,selfine coodeation,dyssomnia等,dyssomnia等)。在他的书中,Haidt汇编了父母的描述性证词,他们无助地观察孩子的行为改变和痛苦。),Haidt的文章表明,至少对于美国而言,可用的数据使我们能够追踪自新千年开始以来,主要是在2010年代初期开始的内部化和外部疾病的兴起。当然,我们可以并且应该同情他们可以理解的关注点,但是除了确认问题的严重性外,作者还提供了渠道,可以通过该渠道就可以在2010年代以来及其在过去五年中迅速升高的速度提高的心理社会条件来构建一个病因的解释性假设。可以大大简化事物,可以说,海德(Haidt)论文中最重要的部分是在与近年来观察到的与心理障碍浪潮有关的数字中添加了一种真实原因(从牛顿意义上讲)。即:
过去有自己的磁场,其小尺寸导致核心的能量损失,从而导致核心冷却和产生磁场的能力(3)。美国物理学家兼退休的首席科学家詹姆斯·劳尔·格林(James Lauer Green)提议在拉格朗日(Lagrange)1点(L1)(4)上产生磁场。Lagrange点是在空间中的sta tionary位置,在该空间中,在与更大的物体相关的旋转框架内,在小体上作用的引力作用在小体内。在他的学术论文中,绿色提议将人工磁层屏蔽放在L1上,以阻止太阳风,从而始终侵蚀火星大气(4)。他建议这样做可以使痕量气体的积累,从而逐渐形成火星上的微弱气氛。随着时间的流逝,温室气体的存在将有助于使大气变暖,从而使被困的水解冻,然后将其转化为水蒸气。此过程有可能补充火星海洋的大约七分之一(4)。我们的研究重点是通过使用太阳能帆,太阳能电池板和超级电管磁体来进一步发展这一想法,以保护火星免受太阳风的影响并使火星可居住(图1)。为了生成人造磁场,超导磁体提供了有希望的解决方案。它们经常用于医院,用于磁共振成像和诸如核磁共振光谱ETERS,融合反应堆和粒子加速器等科学仪器中(5)。在这些条件下,超导磁体的绕组具有零电阻。这些磁铁表现出降低的电阻和提高的效率,从而可以产生较大的磁场,并具有较低的能量消耗。超导磁体表现出零电阻,并且没有产生热量,从而使它们保持高电流强度(6)。维持零电阻的主要要求是将温度降低到极低的值,这是通过将电气棒网浸入液体氦气中来实现的(6)。为了最大程度地减少气体蒸发,将浓度浸入另一个装有液氮的露水容器中。即使CIR CUIT紧密关闭,提供给电路的电流也会持续到所需的时间。超导磁体非常适合在太空中使用,因为它们消耗的功率很少,并且超导体可以在当前的登角机构中运行,而后者比传统导体高得多(7)。要运输和部署这些磁铁,太阳帆可能是理想的解决方案。太阳帆利用太阳发出的光的压力推动了航天器。太阳能航行消除了燃料的需求,因为它们依靠光子进行运动(8)。为了向磁铁提供能量,可以使用太阳能电池板。当太阳照在太阳能电池板上时,来自太阳的能量
尽管它占据了宇宙空间的 99% 以上,但在地球上也只能看到极光等罕见现象。这种现象发生在两极,是由于来自太阳风的电子受到地球磁力加速并与大气中的原子碰撞而产生的。在这种相互作用中,包括原子的电离和激发在内的一系列事件形成了不同能量状态的物质“沙拉”。这种物质“沙拉”不符合热力学平衡,具有与周围环境重新结合的能量。1928 年,人们提出了这种物质的第四种状态,并称之为等离子体[ 1 ]。然而,直到第二次世界大战之后,研究人员才开始对人造等离子体的形成及其对人类的潜在益处产生兴趣。起初,人们竞相开发用于热核聚变的等离子体,即在极低的压力下产生等离子体,然后利用强磁场进行受控核聚变[ 2 ]。随后,在 20 世纪 70 年代,等离子体技术开始了更加深入的研究,不仅在电子工业,而且在航空航天、汽车、冶金、钢铁、生物医学、纺织、光学和造纸工业也得到了广泛的应用[3-10]。这些技术大部分使用低压冷等离子体,即电子能量远大于等离子体中其他粒子平均能量的等离子体,而炼钢等应用则使用热等离子体,其中系统接近平衡,即电子能量与其他物质的能量大致相同。由于产生等离子体所需的压力较低,这些冷等离子体技术在使用上受到限制。除了尺寸限制之外,还有其他因素,例如需要处理的产品具有低蒸汽压,从而在加工过程中保持其完整性。一种可在大气压下使用并保持等离子体低温的技术,即允许电子与其他物质发生高能碰撞的非平衡特性,使环境保持低温。这种技术在聚合物、液体和活组织等热敏感材料的应用方面具有很大的吸引力[11,12]。过去 20 年的研究正在不断发展,被称为冷大气等离子体(或冷大气压等离子体 PFA)。它们主要应用于健康领域,如伤口愈合、血液凝固、龋齿消毒和改变哺乳动物细胞功能,并有可能用于新的癌症治疗[13-17]。在农业中,它可用于刺激植物生长和减少病原体、种子发芽、水果生物活性表面的净化以及收获后的净化[18-23]。在环境领域,它可用于环境、液体和固体的净化、水处理、染料降解等[24, 25]。在巴西,该技术仍很少得到应用和普及。一些使用它的研究中心以孤立和不系统的方式进行研究。 2020 年 2 月 8 日在 CNPq 研究目录中进行的搜索表明,巴西有 10 个研究小组的名称中带有“等离子体”一词,其中只有 02 个研究小组的名称中包含“大气等离子体”或“冷等离子体”一词。俄罗斯半干旱地区联邦乡村大学(UFERSA)自 2012 年以来一直致力于开展大气冷等离子体在农业、健康和环境领域的应用研究,并取得了有趣且前所未有的成果。考虑到该研究的低成本和相关性,以及其多学科、创新和跨部门集成的性质,该技术的传播可能是其在其他研究机构和国家工业中传播的重要一步。凭借我们过去 8 年积累的经验,我们将能够接近农业、卫生和