已在Katholieke Universiteit Leuven的大学存储库Lirias(https://lirias.kuleuven.be/)上存档。内容与已发表论文的内容相同,但没有发布者的最终排版。参考这项工作时,请引用完整的书目信息:Tonti,M.,Verheyen,D.,Kozak,D.,Skåra,T.,Van Impe,J.F.M。(2024)。在脱脂和全牛奶粉中,鼠伤寒沙门氏菌和单核细胞增生的射频失活。国际食品微生物学杂志,413,110556。期刊和原始发表的论文可在以下网址找到:https://www.sciencecendirect.com/science/article/pii/s0168160523004737可以联系相应的作者以获取其他信息。开放访问条件可在以下网址提供:http://www.sherpa.ac.uk/romeo/
通过磁共振成像 (MRI) 获得的神经影像测量值可以作为此类生物标志物,作为评估治疗反应或预后准确性的客观终点(5)。鉴于有一致报告称,精神病患者(9-14)和疾病的各个阶段(15-19)都存在异常的功能和结构连接,因此脑连接测量(6-8)尤其有前景。与精神病相关的功能连接中断(通过静息态功能 MRI-rsfMRI(20) 测量)通常包括大规模皮质网络内部和之间的低连接(6),尤其是涉及额叶和颞叶皮质的网络,而与精神病相关的结构连接中断(通过扩散张量成像-DTI(21) 测量)包括全脑分数各向异性 (FA) 的降低,FA 是白质完整性的间接测量(22)。事实上,这两个标记本身在精神病患者和健康个体中都是相互关联的(23、24)。
摘要:电化学随机访问记忆(ECRAM)是一种最近开发且高度有希望的模拟电阻记忆元件,用于内存计算。一个长期以来的ECRAM挑战是在几个小时内获得保留时间。这种短暂的保留使ECRAM无法被考虑在深神经网络中进行推理分类,这可能是进行内存计算的最大机会。在这项工作中,我们开发了一个ECRAM细胞,其保留率的保留率比以前的数量级长,并且我们预计在85°C下将超过10年。我们假设这种特殊保留的起源是相位分离,它可以形成多个有效的平衡抗性状态。这项工作强调了使用相位分离来产生ecram细胞的承诺和机会,并具有特殊且潜在的永久保留时间。
电场的纵向成分是e z = ∑ ae ikrቀxcos 2nπn + ysin 2nπnπe-k e -k z z z z n n = 1,带有
摘要 - 光子综合电路(图片)是片上光学技术的基础。MACH-ZEHNDER调制器(MZM)是图片的有吸引力的构件,这些图片主要依赖于材料中弱且挥发性的光学效应。相比之下,相变材料(PCM),例如GE 2 SB 2 SE 4 TE 1(GSST)是有前途的候选人,可以实现有效且非易失性的可重构光学设备。然而,PCM的相跃迁伴随着其折射率的假想部分的大大变化,这使得MZMS的设计具有挑战性。在本文中,引入了两种称为“损失平衡”和“均衡”的有趣设计方法,以提出基于GSST的高性能MZM。在这方面,提出了以石墨烯为基础的基于GSST的波导,该波导在两种引入方法中都扮演着可构型活性波导的作用。根据提出的分析,在1550 nm的波长下,活性长度为4.725 µm,插入小于2 dB的非易失性MZM是可实现的。最后,对提出的基于GSST的波导进行热模拟,以便估计要进行非晶化(擦除)和结晶过程所需的电压分别为12 V和4.3 V。
大规模数据存储的爆炸性增长和对超快数据处理的需求需要具有出色性能的创新记忆设备。2D材料及其带有原子尖锐界面的范德华异质结构对内存设备的创新有着巨大的希望。在这里,这项工作呈现出所有由2D材料制成的功能层,可实现超快编程/擦除速度(20 ns),高消光率(最高10 8)和多位存储能力。这些设备还表现出长期的数据保留超过10年,这是由高栅极偶联比(GCR)和功能层之间的原子尖锐接口促进的。此外,这项工作证明了通过协同电气和光学操作在单个设备单元上实现“或”逻辑门的实现。目前的结果为下一代超速,超级寿命,非挥发性存储器设备提供了坚实的基础,并具有扩展制造和灵活的电子应用程序的扩展。
摘要:纠缠在量子信息处理中起着至关重要的作用。由于其独特的材料特性,碳化硅最近成为可扩展实现先进量子信息处理能力的有希望的候选者。然而,迄今为止,在碳化硅中仅报道了核自旋的纠缠,而纠缠光子源,无论是基于块体还是芯片级技术,仍然难以捉摸。在这里,我们首次报告了集成碳化硅平台中纠缠光子源的演示。具体而言,通过在4H绝缘体上碳化硅平台中的紧凑微环谐振器中实现自发四波混频,在电信C波段波长处有效地产生强相关的光子对。在泵浦功率为 0 时,最大巧合与意外比率超过 600。17 mW,对应的成对率为 ( 9 ± 1 ) × 10 3 对/秒。针对此类信号-闲置光子对创建并验证了能量-时间纠缠,双光子干涉条纹的可见度大于 99%。还测量了预期的单光子特性,预期的 𝑔 ( 2 ) ( 0 ) 约为 10 − 3 ,表明 SiC 平台有望成为量子应用的完全集成、CMOS 兼容的单光子源。
6 Belyakina Valeria Nikolaevna 4.88 5 5 5 0 7 Kareva Elizaveta Artemovna 4.73 5 4 4 0 8 Mikhailova Ksenia Radislavna 4.63 5 4 4 0 ✓ ✓ 9 Bilaya Ekaterina Andreevna 4.58 5 5 4 0 10 Boldova Marina Evgenievna 4.58 4 4 4 0 11 Anpilogova Tatyana Viktorovna 4.56 4 4 5 0 12 Shmakova Tatyana Alekseevna 4.5 4 5 4 0 13 Kopylova Daria Sergeevna 4.47 4 4 4 0
电子邮件:stmf_tasha@yahoo.com 摘要。在农业航空喷洒文献中,喷雾漂移缓解和植物保护产品应用中的喷雾质量仍然是评估股东价值的两个关键因素。通过一系列计算流体动力学 (CFD) 模拟,模拟了 250 米跑道上的偏离目标漂移和地面沉积物的研究。蒸发液滴的漂移模式由一架以 30 米/秒 (60 英里/小时) 的恒定速度飞行的飞机释放,该飞机携带 20 米幅宽的喷杆,喷杆上有 12 个扇形喷嘴,释放高度距地面 3.7 米至 4.7 米。液滴轨迹是根据给定的空速计算的,采用拉格朗日粒子扩散模型,不包括任何风效应扰动。所提出的 CFD 模型预测与引用的文献在广泛的大气稳定度值范围内的预测结果非常吻合。结果表明,随着喷雾释放高度的增加,喷雾漂移和液滴轨迹显著增加。这表明,较低的飞机喷雾释放高度与较低的空速相结合对于提高喷雾质量至关重要,而最大限度地在目标区域均匀沉积对于最大限度地降低喷雾漂移风险具有重要意义。
您可以使用安装在 Windows* 主机上的 Intel ® System Studio 来识别和分析目标 Windows 系统的能源使用情况。Intel System Studio 的 Intel Energy Profiler 功能使用目标系统上的 Intel SoC Watch 收集器来分析目标系统的功率和能耗。通过 Intel SoC Watch 收集器收集的数据可以导入主机系统上的 Intel VTune ™ Amplifier for Systems,以可视化结果并了解目标系统的能源使用情况。本教程将指导您完成使用 Intel SoC Watch 收集器收集能源数据并在 VTune Amplifier for Systems 中查看数据所需的工作流程步骤。