摘要:耐药性癫痫(DRE)约占癫痫病例的30%,其特征是无法用两种或多种抗癫痫药控制的癫痫发作。患病率估计为每1000人5至10例。传统治疗方法,例如手术切除和神经调节技术,在某些患者中有效,但适用性和不一致的结局。近年来,由于其可能修复神经网络,分泌神经营养因素并调节炎症的潜力,干细胞疗法已成为研究重点。动物模型研究表明,诱导多能干细胞(IPSC)和间质干细胞(MSC)的移植可以降低癫痫发作频率50-80%并改善认知功能。然而,干细胞疗法仍然面临挑战,包括选择细胞来源,移植后存活和功能整合以及长期安全。随着技术和跨学科合作的进步,Stem Cell Therapy有望成为DRE的重要治疗选择,为患者提供了新的希望。
©作者2025。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y/4。0/。Creative Commons公共领域的奉献豁免(H T P://C R E A T I V E C O M M M M M M M M O M M M M M O M M M O M M M O R G/P U B/P U B L I C D O M A I N/Z E R O/1。0/1。0/)适用于本文提供的数据,除非在该文章中提供的数据可用。
(1) 器件在暴露于任何指定的辐射环境时都不会闩锁。 (2) 使用 CREME96 计算,应用了威布尔参数和其他相关属性。 辐射特性 总电离剂量辐射 MRAM 辐射硬度保证 TID 水平通过 60 Co 测试(包括过量和加速退火)认证,符合 MIL-STD-883 方法 1019 标准。制造过程中的晶圆级 X 射线测试提供持续保证。 单粒子软错误率 MRAM 中包含特殊工艺、存储器单元、电路和布局设计考虑因素,以最大限度地减少重离子和质子辐射的影响并实现较小的预计 SER。可根据要求提供威布尔参数和其他相关属性,以计算其他轨道和环境的预计翻转率性能。 瞬态剂量率电离辐射 产品设计的许多方面都经过了处理,以处理与瞬态剂量率事件相关的高能级。这使得 MRAM 能够在暴露于瞬态剂量率期间和之后写入、读取和保留存储的数据
©此手稿版本可在CC-by-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/
实现这一目标的潜在技术。,使用可切换等离激元技术和波导37可能会在257上进行进一步的尺寸降低,如后面的一部分所述。258这两个领域的未来发展对于任何259个光子记忆元素或需要进行任何处理的未来芯片的可行使用都很重要。260 261薄膜应用:颜色像素,显示和智能玻璃262 263
基于硫代构化相位变化材料(PCM)的光子记忆细胞的实现引起了人们的关注,因为它们的快速,可逆和非易失性编程功能。[1]在硅光子平台上整合PCM存储器单元,例如GE 2 SB 2 TE 5(GST)和Aginsbte(AIST),[2] [2]可以使全观内存处理,并在其电子交通方面具有显着的优势,并在带状,速度,速度,速度,速度,速度,速度,速度,速度和并行处理中。[3,4]在开发光学逻辑门,[5,6]可恢复可填充的Photonic电路,[7-9]电气控制的光子记忆细胞,[10,11]等离激源性波导开关,[12,13] Neuro-neuro启发的光子Synapes,[14]和Neural Net-Net-net-net-net-net-net-net-net-net-net-net-net-Net-net-net-net-Net-net-net-Net-net-net-net-Ner ner Net-net-net-nerter Worts中。[15,16]先前的研究系统地研究了光子记忆细胞对二硝基二硝酸盐仪(SI 3 N 4)和硅启用器(SOI)平台的性能,[17,18],在这些平台上,从基线(完全结晶的状态)观察到了单调增加的透射率,该传播是作为拟合程序的拟合功率。这个完善的单调光学编程使可变的可变性能够归因于Hebbian学习的基本生物神经突触的峰值依赖性可塑性(STDP)。[14]值得注意的是,最近在各种光电平台上开发了人工突触,例如[19],基于Chalcogenide玻璃波波[20]和H-BN/WSE 2异质结构。[21]在STDP中,神经元之间的连接强度,即突触重量或突触效率,根据神经元的输出和输入尖峰的相对时机进行调整。[22]突触可塑性的基本公式,即突触重量的变化可以表示为δw¼f(δt),其中δt p p p pre,t pre,t post和t pre分别是后和神经前的时间。δT<0带有δW<0和δT> 0引入长期抑郁(LTD),并带有δW> 0的长期增强(LTP)。
摘要 在空间和时间上调节基因活性的能力对于研究发育过程中以及胚胎后过程和疾病模型中的细胞类型特异性基因功能至关重要。Cre/lox 系统已广泛用于对斑马鱼的基因功能进行细胞和组织特异性条件分析。然而,缺乏简单有效的分离稳定的 Cre/lox 调控斑马鱼等位基因的方法。在这里,我们应用了我们的 GeneWeld CRISPR-Cas9 靶向整合策略来生成可提供强大条件失活和拯救的 floxed 等位基因。通用靶向载体 UFlip 具有用于克隆位于 floxed 2A-mRFP 基因陷阱两侧的短同源臂的位点,被整合到 rbbp4 和 rb1 的内含子中。 rbbp4 off 和 rb1 off 整合等位基因导致强烈的 mRFP 表达、内源基因表达减少 99% 以上,并重现已知的 indel 功能丧失表型。Cre 的引入导致 floxed 盒的稳定倒位、mRFP 表达的丧失和表型挽救。rbbp4 on 和 rb1 on 整合等位基因与功能丧失突变相结合不会引起表型。Cre 的添加通过盒的稳定倒位、基因捕获和 mRFP 表达以及预期的突变表型导致条件性失活。神经祖细胞 Cre 驱动器用于条件性失活和表型拯救,以展示如何在特定细胞群中使用这种方法。这些结果共同验证了一种在斑马鱼中有效分离 Cre/lox 反应条件等位基因的简化方法。我们的策略为生成基因嵌合体提供了一种新的工具包,并代表了斑马鱼遗传学的重大进步。