FMEA(失效模式与影响分析)是一种分析系统各个部件可能发生的所有失效模式,并确定对系统可能产生的所有影响的方法。该方法最早在美国军工领域发展起来。FMEA作为当今可靠性领域一项重要的分析技术,既应用于软件系统,也应用于硬件系统。针对FMEA过程中如何避免人工分析的不确定性,如何应用FMEA提高分析的准确性和效率等问题,本文提出了一种基于模型的提高FMEA分析效率的新技术。该技术在对分析对象的信息提取、对分析数据的分析和管理等方面都优于以往的软件产品。因此,对发现系统流程、提高系统可靠性、减少软件产品的失效有显著的效果。
摘要。飞机起落架(ALG)的失效主要是由于振动疲劳引起的。其主要失效模式为疲劳断裂。目前,ALG的可靠性计算通常采用基于二元状态假设的应力强度干涉(SSI)模型。而实际情况是,强度随时间的推移而退化,失效与成功的界限模糊,二元状态假设与事实不符。针对这一问题,本文采用隶属函数(MF)表示振动疲劳失效模式下强度退化引起的模糊安全状态。此外,提出了一种基于模糊失效域(FFD)的ALG模糊可靠性模型(FRM)。最后,通过仿真算例验证了方法的可行性。通过将FRM的仿真结果(SR)与静态SSI模型和动态SSI模型的SR进行比较,验证了该方法的合理性。FRM可以在不考虑逐渐退化过程的情况下计算可靠性,因此应用更为广泛。
• 基本设计概念:极限载荷、极限载荷、安全系数、安全裕度 • 飞机载荷:惯性载荷、载荷系数;设计练习 • 金属:产品形式、物理和机械性能、失效模式、设计允许值;热机械加工 • 纤维增强层压复合材料:产品形式、物理和机械性能;失效模式;设计允许值;加工 • 材料选择:铝、钛、钢、复合材料和新兴结构材料; • 静态强度设计:高载荷拉伸结构;组合载荷;设计练习 • 机械接头:螺栓和铆钉;粘合和焊接接头;凸耳和配件;设计练习 • 薄壁结构:紧凑梁的弯曲和扭转回顾 • 薄壁结构:薄壁梁剪切流分析简介 • 半张力现场梁;设计练习; • 有限元方法简介 • 屈曲和刚度要求设计:薄壁和组合结构的屈曲 • 部件设计:机翼和尾翼、机身、起落架、附件 • 损伤容限设计:结构裂纹扩展;断裂力学简介;临界裂纹长度;分析练习;大面积疲劳损伤;检查安排 • 耐久性设计:疲劳;分析练习;腐蚀 • 认证:分析和验证要求、部件和飞机测试要求
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
电容性隔离产品(例如隔离器,隔离放大器,隔离电源产品等)是将输出与输入分开的设备,避免了两个系统之间的不需要直接和瞬态电流,而信号和功率可以正确传输。例如,隔离器可以将引用不同水平引用的信号,保护敏感的控制模块免受高压的影响,并在发生电气故障时最小化故障覆盖率。对于这些孤立的产品,隔离屏障的故障会导致系统故障和潜在的操作员安全危害。在这里,我们讨论了隔离失效模式的机制以及推荐的电容隔离设备以避免隔离失败的方法。
1. 简介 1.1. 材料力学在设计中的作用 1.2. 材料行为和失效模式 2. 材料的弹性和非弹性行为 2.1. 单轴载荷下的线性弹性行为 2.2. 非线性和非弹性行为 2.3. 屈服准则 2.4. 断裂机制 3. 生物系统中材料的力学行为 3.1. 钢材 3.2. 混凝土 3.3. 木材 3.4. 骨骼 3.5. 柔性材料 3.6. 其他材料 4. 梁的弯曲分析 4.1. 梁的适用性 4.2. 梁挠度方程 4.3. 挠度分析方法 5. 柱的稳定性分析 5.1. 结构的稳定性 5.2. 欧拉公式 5.3. 侧向支撑 5.4. 柱设计 6. 结构分析中的能量方法简介(可选) 6.1. 应变能 6.2功能法 6.3. 卡斯蒂利亚诺定理
本研究的主要目的是研究夹层复合材料的分层损伤。夹层结构的这种损伤模式对结构行为尤其有害。芯部开裂和表面/芯部分离是软木团芯夹层结构中常见的失效模式。这些测试的夹层样品由软木团芯制成,夹在玻璃纤维聚酯(04 层层压板)之间作为表皮。实验研究包括精心制作不同类型的夹层样品,以确定它们在模式 I 中的断裂。双悬臂梁 (DCB) 样品通过初始裂纹的大小来区分。后者是通过在精心制作过程中在芯部和上层表皮之间放置具有不同初始裂纹长度(a= 30、40、50、60 和 70 毫米)的铝膜来获得的。裂纹的萌生
采用增材制造工艺生产的产品已引起工程、医疗保健和整个社会的高度关注。然而,人们对增材制造合金的失效知之甚少,尤其是大多数工程应用中常见的腐蚀和磨损。这种合金的随意和低效使用引发了人们对安全性、兼容性、可靠性、成本和消费者满意度的担忧。为了解决这些问题,我们根据已发表的文献研究了通过增材制造制造的合金最常见的失效模式——腐蚀和磨损的机制。研究发现,加工条件对合金的微观结构以及耐腐蚀和耐磨性有着深远的影响。由于层状结构,腐蚀和磨损的起始和发展都表现出各向异性行为。本综述的见解可作为最先进技术的参考,并有助于开发未来具有更好耐腐蚀和耐磨性能的增材制造合金。[DOI:10.1115/1.4050503]
2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。