碳材料显示出有趣的物理特性,包括在石墨烯中发现的超导性和高度各向异性的热导率。压缩应变可以在碳材料中诱导结构和键合跃迁并创建新的碳相,但是它们与导热率的相互作用仍然在很大程度上没有探索。我们使用Picsecond瞬时热室内和第一原理计算研究了压缩石墨阶段的原位高压导热率。我们的结果表明,在15 - 20 GPA时峰值至260 W = MK峰值,但降至3。0 W = 〜35 GPA的MK。与免费的原位拉曼和X射线衍射结果一起,压缩碳的异常热导率趋势归因于声子介导的电导率,受层间屈曲和SP 2的影响,SP 2转换为SP 3过渡,然后,M-Carbon Nanocrystals和Nananocrystals和Nananocrystals和Amorphous Carbos的形成。应变诱导的结构和键合变化提供了碳材料中热和机械性能的广泛操作。
https://doi.org/10.26434/chemrxiv-2023-hc8jv-v3 orcid:https://orcid.org/0000-0000-0001-7981-5162不通过chemrxiv peer-review dectect content。 许可证:CC由4.0https://doi.org/10.26434/chemrxiv-2023-hc8jv-v3 orcid:https://orcid.org/0000-0000-0001-7981-5162不通过chemrxiv peer-review dectect content。许可证:CC由4.0
上午 10:10:开幕全体会议演讲 – Mark Wilde (康奈尔大学) 玻色子失相信道的通信、鉴别和估计的基本极限的精确解 失相是一种影响量子信息载体的突出噪声机制,也是实现有用的量子计算、通信和传感的主要挑战之一。在玻色子系统中,玻色子失相信道 (BDC) 是许多应用的核心,它形成了一类关键的非高斯信道,用于模拟影响超导电路或光纤通信信道的噪声。在这里,我们考虑 BDC 的通信、鉴别和估计,同时使用量子力学允许的一般策略来完成这些任务。我们为所有 BDC 的量子、私有、双向辅助量子和密钥协商容量提供了精确公式,证明它们都等于信道底层分布与均匀分布的相对熵。对于区分和估计任务,我们根据定义 BDC 的概率密度将困难的量子问题简化为简单的经典问题。我们提出了各种区分和估计任务的性能上限,并表明它们也是可以实现的。据我们所知,这是非高斯玻色子信道的第一个例子,对于所有这些任务都有精确的解。与 Zixin Huang(麦考瑞大学)和 Ludovico Lami(阿姆斯特丹大学)合作。
在 IV 族单硫族化物中,层状 GeSe 因其各向异性、1.3 eV 直接带隙、铁电性、高迁移率和出色的环境稳定性而备受关注。电子、光电子和光伏应用依赖于合成方法的开发,这些方法可以产生大量具有可控尺寸和厚度的晶体薄片。在这里,我们展示了在低热预算下,在不同基底上通过金催化剂通过气相-液相-固相工艺生长单晶 GeSe 纳米带。纳米带结晶为层状结构,带轴沿着范德华层的扶手椅方向。纳米带的形态由催化剂驱动的快速纵向生长决定,同时通过边缘特定结合到基面而进行横向扩展。这种组合生长机制能够实现温度控制的纳米带,其典型宽度高达 30 μm,长度超过 100 μm,同时保持厚度低于 50 nm。单个 GeSe 纳米带的纳米级阴极发光光谱表明,在室温下具有强烈的温度依赖性带边发射,其基本带隙和温度系数分别为 E g (0) = 1.29 eV 和 α = 3.0×10 -4 eV/K,证明了高质量 GeSe 和低浓度的非辐射复合中心,有望用于包括光发射器、光电探测器和太阳能电池在内的光电应用。
摘要背景:阐明脑缺血再灌注损伤 (CIRI) 的发病机制和开发新的有效疗法至关重要。丁香脂素 (Syr) 是一种存在于各种药草中的呋喃木脂素,可能在治疗 CIRI 中发挥重要作用。本研究旨在研究 Syr 对 CIRI 进展的影响并揭示其中的潜在机制。方法:建立了一种大脑中动脉闭塞 (MCAO) 小鼠模型来研究 CIRI。给小鼠施用浓度为 20 mg/kg 和 40 mg/kg 的 Syr,持续 48 小时。使用 2,3,5-三苯基四唑氯化物 (TTC) 测定法评估 Syr 对小鼠脑梗死的影响。采用免疫染色法检测离子化钙结合衔接分子 1 (Iba1) 和胶质纤维酸性蛋白 (GFAP),采用酶联免疫吸附试验 (ELISA) 检测白细胞介素 (IL)-1 β、肿瘤坏死因子 (TNF)- α、IL-10 和 IL-6 的水平。此外,还进行了末端脱氧核苷酸转移酶 (TdT) 介导的 2′-脱氧尿苷 5′-三磷酸 (dUTP) 缺口末端标记 (TUNEL) 试验,以评估对大脑中动脉闭塞模型 (MCAO) 小鼠脑组织中脑胶质细胞活化、炎症和细胞凋亡的影响。进一步进行免疫印迹以验证其作用机制。结果:Syr 可减轻 MCAO 小鼠的脑梗死。此外,它还降低了这些模型中脑神经胶质细胞的激活。我们的研究结果进一步表明,Syr 可减少 MCAO 小鼠脑组织内的炎症。它还抑制这些组织中的细胞凋亡。从机制上讲,Syr 抑制核因子 κB (NF- κ B) 通路,从而缓解 CIRI。结论:总之,Syr 通过阻断神经胶质细胞激活和抑制炎症反应来缓解 CIRI。
基于硫代构化相位变化材料(PCM)的光子记忆细胞的实现引起了人们的关注,因为它们的快速,可逆和非易失性编程功能。[1]在硅光子平台上整合PCM存储器单元,例如GE 2 SB 2 TE 5(GST)和Aginsbte(AIST),[2] [2]可以使全观内存处理,并在其电子交通方面具有显着的优势,并在带状,速度,速度,速度,速度,速度,速度,速度,速度和并行处理中。[3,4]在开发光学逻辑门,[5,6]可恢复可填充的Photonic电路,[7-9]电气控制的光子记忆细胞,[10,11]等离激源性波导开关,[12,13] Neuro-neuro启发的光子Synapes,[14]和Neural Net-Net-net-net-net-net-net-net-net-net-net-net-net-Net-net-net-net-Net-net-net-Net-net-net-net-Ner ner Net-net-net-nerter Worts中。[15,16]先前的研究系统地研究了光子记忆细胞对二硝基二硝酸盐仪(SI 3 N 4)和硅启用器(SOI)平台的性能,[17,18],在这些平台上,从基线(完全结晶的状态)观察到了单调增加的透射率,该传播是作为拟合程序的拟合功率。这个完善的单调光学编程使可变的可变性能够归因于Hebbian学习的基本生物神经突触的峰值依赖性可塑性(STDP)。[14]值得注意的是,最近在各种光电平台上开发了人工突触,例如[19],基于Chalcogenide玻璃波波[20]和H-BN/WSE 2异质结构。[21]在STDP中,神经元之间的连接强度,即突触重量或突触效率,根据神经元的输出和输入尖峰的相对时机进行调整。[22]突触可塑性的基本公式,即突触重量的变化可以表示为δw¼f(δt),其中δt p p p pre,t pre,t post和t pre分别是后和神经前的时间。δT<0带有δW<0和δT> 0引入长期抑郁(LTD),并带有δW> 0的长期增强(LTP)。
摘要 在空间和时间上调节基因活性的能力对于研究发育过程中以及胚胎后过程和疾病模型中的细胞类型特异性基因功能至关重要。Cre/lox 系统已广泛用于对斑马鱼的基因功能进行细胞和组织特异性条件分析。然而,缺乏简单有效的分离稳定的 Cre/lox 调控斑马鱼等位基因的方法。在这里,我们应用了我们的 GeneWeld CRISPR-Cas9 靶向整合策略来生成可提供强大条件失活和拯救的 floxed 等位基因。通用靶向载体 UFlip 具有用于克隆位于 floxed 2A-mRFP 基因陷阱两侧的短同源臂的位点,被整合到 rbbp4 和 rb1 的内含子中。 rbbp4 off 和 rb1 off 整合等位基因导致强烈的 mRFP 表达、内源基因表达减少 99% 以上,并重现已知的 indel 功能丧失表型。Cre 的引入导致 floxed 盒的稳定倒位、mRFP 表达的丧失和表型挽救。rbbp4 on 和 rb1 on 整合等位基因与功能丧失突变相结合不会引起表型。Cre 的添加通过盒的稳定倒位、基因捕获和 mRFP 表达以及预期的突变表型导致条件性失活。神经祖细胞 Cre 驱动器用于条件性失活和表型拯救,以展示如何在特定细胞群中使用这种方法。这些结果共同验证了一种在斑马鱼中有效分离 Cre/lox 反应条件等位基因的简化方法。我们的策略为生成基因嵌合体提供了一种新的工具包,并代表了斑马鱼遗传学的重大进步。
1 美国佛罗里达大学医学院分子遗传学与微生物学系;2 美国佛罗里达大学健康癌症中心;3 美国佛罗里达大学医学院生物化学与分子生物学系;4 美国佛罗里达大学遗传学研究所;5 中国广州中山大学中山眼科中心国家眼科学重点实验室;6 中国海宁浙江大学医学院国际校区浙江大学-爱丁堡大学研究所(ZJU-UoE Institute);7 美国三角研究园国家环境健康科学研究所(NIEHS)生殖与发育生物学实验室;8 美国佛罗里达大学医学院医学系
摘要 逆转座子是一类可移动的遗传元件,能够通过逆转录 RNA 中间体进行转座。水稻品种日本晴在第 7 号染色体上(Tos17 Chr.7)和第 10 号染色体上(Tos17 Chr.10)含有两个几乎相同的 Tos17 基因组拷贝,Tos17 是一个内源的 copia 样 LTR 逆转座子。前期研究表明,在组织培养过程中,只有 Tos17 Chr.7 具有转座活性。Tos17 Chr.7 已被广泛用于插入诱变,作为水稻基因功能分析的工具。然而,在水稻转化过程中,Tos17 Chr.7 转座可能会产生具有不良性状的体细胞突变,从而影响转基因的评估或应用。本研究利用 CRISPR/Cas9 基因编辑系统构建了一个 Tos17 Chr.7 敲除突变体 D873。 Tos17 Chr.7 在D873上的基因编辑等位基因被命名为Tos17 D873 ,该基因在Tos17 Chr.7的pol基因上有一个873bp的DNA缺失,从而导致GAG-整合酶前结构域和整合酶核心结构域的缺失。虽然Tos17 D873的转录在D873愈伤组织中被激活,但在再生的D873植株中没有检测到Tos17 D873的转座。结果表明GAG-整合酶前结构域和整合酶核心结构域是Tos17 Chr.7转座所必需的,且这两个结构域的缺失不能被水稻基因组中的其他LTR逆转录转座子补充。由于 Tos17 Chr.7 衍生的体细胞克隆诱变在 D873 植物中被阻断,因此 Tos17 D873 等位基因的产生将有助于生产转基因水稻植物,以进行基因功能研究和遗传工程。类似的方法可用于在作物育种中失活其他逆转录转座子。
成纤维细胞生长因子受体(FGFR)信号传导在乳腺胚胎发育,组织稳态,肿瘤发生和转移中起关键作用。fgfr,其众多的FGF配体和信号伴侣在乳腺癌的进展中常常失调,并且是乳腺癌治疗耐药的原因之一。此外,上皮细胞上的FGFR信号受到乳房微环境信号的影响,因此增加了乳房发育异常或癌症进展的可能性。我们对复杂的FGFR家族,配体FGF及其调节伙伴的多层作用的了解可能会为乳腺癌患者提供新颖的治疗策略,作为单个药物或理性的共同靶向,这将在本综述中深入探讨。