基于硫代构化相位变化材料(PCM)的光子记忆细胞的实现引起了人们的关注,因为它们的快速,可逆和非易失性编程功能。[1]在硅光子平台上整合PCM存储器单元,例如GE 2 SB 2 TE 5(GST)和Aginsbte(AIST),[2] [2]可以使全观内存处理,并在其电子交通方面具有显着的优势,并在带状,速度,速度,速度,速度,速度,速度,速度,速度和并行处理中。[3,4]在开发光学逻辑门,[5,6]可恢复可填充的Photonic电路,[7-9]电气控制的光子记忆细胞,[10,11]等离激源性波导开关,[12,13] Neuro-neuro启发的光子Synapes,[14]和Neural Net-Net-net-net-net-net-net-net-net-net-net-net-net-Net-net-net-net-Net-net-net-Net-net-net-net-Ner ner Net-net-net-nerter Worts中。[15,16]先前的研究系统地研究了光子记忆细胞对二硝基二硝酸盐仪(SI 3 N 4)和硅启用器(SOI)平台的性能,[17,18],在这些平台上,从基线(完全结晶的状态)观察到了单调增加的透射率,该传播是作为拟合程序的拟合功率。这个完善的单调光学编程使可变的可变性能够归因于Hebbian学习的基本生物神经突触的峰值依赖性可塑性(STDP)。[14]值得注意的是,最近在各种光电平台上开发了人工突触,例如[19],基于Chalcogenide玻璃波波[20]和H-BN/WSE 2异质结构。[21]在STDP中,神经元之间的连接强度,即突触重量或突触效率,根据神经元的输出和输入尖峰的相对时机进行调整。[22]突触可塑性的基本公式,即突触重量的变化可以表示为δw¼f(δt),其中δt p p p pre,t pre,t post和t pre分别是后和神经前的时间。δT<0带有δW<0和δT> 0引入长期抑郁(LTD),并带有δW> 0的长期增强(LTP)。
摘要 在空间和时间上调节基因活性的能力对于研究发育过程中以及胚胎后过程和疾病模型中的细胞类型特异性基因功能至关重要。Cre/lox 系统已广泛用于对斑马鱼的基因功能进行细胞和组织特异性条件分析。然而,缺乏简单有效的分离稳定的 Cre/lox 调控斑马鱼等位基因的方法。在这里,我们应用了我们的 GeneWeld CRISPR-Cas9 靶向整合策略来生成可提供强大条件失活和拯救的 floxed 等位基因。通用靶向载体 UFlip 具有用于克隆位于 floxed 2A-mRFP 基因陷阱两侧的短同源臂的位点,被整合到 rbbp4 和 rb1 的内含子中。 rbbp4 off 和 rb1 off 整合等位基因导致强烈的 mRFP 表达、内源基因表达减少 99% 以上,并重现已知的 indel 功能丧失表型。Cre 的引入导致 floxed 盒的稳定倒位、mRFP 表达的丧失和表型挽救。rbbp4 on 和 rb1 on 整合等位基因与功能丧失突变相结合不会引起表型。Cre 的添加通过盒的稳定倒位、基因捕获和 mRFP 表达以及预期的突变表型导致条件性失活。神经祖细胞 Cre 驱动器用于条件性失活和表型拯救,以展示如何在特定细胞群中使用这种方法。这些结果共同验证了一种在斑马鱼中有效分离 Cre/lox 反应条件等位基因的简化方法。我们的策略为生成基因嵌合体提供了一种新的工具包,并代表了斑马鱼遗传学的重大进步。
1 美国佛罗里达大学医学院分子遗传学与微生物学系;2 美国佛罗里达大学健康癌症中心;3 美国佛罗里达大学医学院生物化学与分子生物学系;4 美国佛罗里达大学遗传学研究所;5 中国广州中山大学中山眼科中心国家眼科学重点实验室;6 中国海宁浙江大学医学院国际校区浙江大学-爱丁堡大学研究所(ZJU-UoE Institute);7 美国三角研究园国家环境健康科学研究所(NIEHS)生殖与发育生物学实验室;8 美国佛罗里达大学医学院医学系
摘要 逆转座子是一类可移动的遗传元件,能够通过逆转录 RNA 中间体进行转座。水稻品种日本晴在第 7 号染色体上(Tos17 Chr.7)和第 10 号染色体上(Tos17 Chr.10)含有两个几乎相同的 Tos17 基因组拷贝,Tos17 是一个内源的 copia 样 LTR 逆转座子。前期研究表明,在组织培养过程中,只有 Tos17 Chr.7 具有转座活性。Tos17 Chr.7 已被广泛用于插入诱变,作为水稻基因功能分析的工具。然而,在水稻转化过程中,Tos17 Chr.7 转座可能会产生具有不良性状的体细胞突变,从而影响转基因的评估或应用。本研究利用 CRISPR/Cas9 基因编辑系统构建了一个 Tos17 Chr.7 敲除突变体 D873。 Tos17 Chr.7 在D873上的基因编辑等位基因被命名为Tos17 D873 ,该基因在Tos17 Chr.7的pol基因上有一个873bp的DNA缺失,从而导致GAG-整合酶前结构域和整合酶核心结构域的缺失。虽然Tos17 D873的转录在D873愈伤组织中被激活,但在再生的D873植株中没有检测到Tos17 D873的转座。结果表明GAG-整合酶前结构域和整合酶核心结构域是Tos17 Chr.7转座所必需的,且这两个结构域的缺失不能被水稻基因组中的其他LTR逆转录转座子补充。由于 Tos17 Chr.7 衍生的体细胞克隆诱变在 D873 植物中被阻断,因此 Tos17 D873 等位基因的产生将有助于生产转基因水稻植物,以进行基因功能研究和遗传工程。类似的方法可用于在作物育种中失活其他逆转录转座子。
成纤维细胞生长因子受体(FGFR)信号传导在乳腺胚胎发育,组织稳态,肿瘤发生和转移中起关键作用。fgfr,其众多的FGF配体和信号伴侣在乳腺癌的进展中常常失调,并且是乳腺癌治疗耐药的原因之一。此外,上皮细胞上的FGFR信号受到乳房微环境信号的影响,因此增加了乳房发育异常或癌症进展的可能性。我们对复杂的FGFR家族,配体FGF及其调节伙伴的多层作用的了解可能会为乳腺癌患者提供新颖的治疗策略,作为单个药物或理性的共同靶向,这将在本综述中深入探讨。
我在海军担任国会联络官,与众议院和参议院拨款委员会国防小组委员会合作处理海军预算事宜。我特别负责舰船建造、水面战和远征战账户。我当时在新楔形大楼 D 环四楼的办公室里。我背对着窗户,走在离 E 环办公室窗户约六英尺远的地方,和大约六名同事一起在电视上观看飞机撞上五角大楼时纽约市的场景。火球充满了我身后的窗户,把我和同事都摔倒在地上。我从地板上站起来,帮助一位同事走向主走廊,然后折回 E 环寻找我的老板。在那里,我和另外三名军官和一名二级军士一起,大声喊出离开该地区的路线,并寻找任何被遗弃的人。浓烟使第五走廊方向的能见度几乎降到一臂之遥,弯曲的地板预示着 E 环的那部分将破裂。烟雾不断逼退,我试图进入海军上将办公室却失败了,我们遇到了全副武装的消防员,他们通过紧急楼梯赶来,不知何故完好无损。(我仍然记不清他们到达之前我们到达的时间,但大概是 15-20 分钟。)我向他们汇报了我们看到的情况,我们认为主要火灾和损坏的位置,并请求他们帮助进入海军上将办公室并搜寻幸存者(几个小时后我们发现,每个人都已经安全撤离了该空间)。我们通过同一个楼梯离开了 E 环,然后我前往分诊区。在接到其他航班进港报告后,该地区出现撤离警报,在此期间,我和其他数百名志愿者一起在分诊区寻求帮助,希望尽一切可能帮助那些需要帮助的人。实际上,来到这里受伤的人相对较少,所以我加入了在高速公路上集合担架员的呼吁,面对着大楼受损的一侧。就在那时,我亲眼看到 E 环倒塌了。几个小时过去了,我们不断要求集合,然后又要求担架员离开,因为很明显,从残骸中拉出的受伤幸存者很少。这时,我和我以前工作的一个朋友离开了担架,和大约 50 名其他志愿者一起在五角大楼内的世贸中心遗址进行停尸房工作。我们分成 8 到 10 人的小队,收到了关于即将执行协助取回遗体任务的初步指示,并等待命令执行。几个小时过去了,他们在草地上给我们喂了军用口粮。命令一直没有下达。由于天气酷热,联邦调查局将该地点标记为犯罪现场,并传来一支专业队伍即将抵达的消息,我们的团队在 19:00 左右得到了保障。[CDR Karl J. Van Deusen,美国海军,国会联络官,海军助理部长]
个人简历 – 范红友博士 现地址:桑迪亚国家实验室,先进材料实验室,1001 University Blvd. SE,阿尔伯克基,新墨西哥州 87106,电话:(505) 272-7128;电子邮箱:hfan@sandia.gov 现职位:1. 桑迪亚国家实验室杰出技术人员,新墨西哥州阿尔伯克基 2. 新墨西哥大学化学与生物工程系微工程材料中心研究教授,新墨西哥州阿尔伯克基 教育背景:吉林大学化学学士,1990 年 中国科学院高分子科学硕士,1995 年 新墨西哥大学化学工程博士,2000 年 专业经历:2015 年至今 桑迪亚国家实验室杰出技术人员,新墨西哥州阿尔伯克基2007 – 2014 技术人员首席成员,桑迪亚国家实验室,新墨西哥州阿尔伯克基。2002 – 2006 技术人员高级成员,桑迪亚国家实验室,新墨西哥州阿尔伯克基。2004 – 至今 研究教授,新墨西哥大学化学与生物工程系微工程材料中心,新墨西哥州阿尔伯克基。2000 – 2002 博士后研究员,桑迪亚国家实验室,新墨西哥州阿尔伯克基。荣誉和奖项:2015 年材料研究学会 (MRS) Fred Kavli 杰出讲座奖
Bernstein、Charleton Copeland、Dan Deacon、Rebecca Eisenberg、Michael Froomkin、Jim Gibson、Patrick Gudridge、Kristian Hammond、Corinna Lain、Matt Sag、Andres Sawicki、Alex Stremitzer、Charlotte Tschider 和 Christopher Yoo。感谢 Luca Baltensberger、Rabea Benhalim、Ana Bracic、Christopher Corts、Sue Glueck、Claudia Haupt、Fiona Illi、Izzy Longstaff、Andrea Matwyshyn、Emily McReynolds、Aileen Neilson、Paul Ohm、Nadav Orien-Peer、Gabriel Rauterberg、Blake Reid、Nikkita Rivera、Andrew Selbst、Lawrence Solum、Sloan Speck、Elizabeth Stalfort 和 Harry Surden 提供的有益评论和对话。本文受益于 AALS 2020 年会、苏黎世联邦理工学院和苏黎世大学与圣加仑大学创新法律与经济学研讨会、人工智能法律学者圆桌会议、西北大学、宾夕法尼亚大学和斯坦福大学法学院法律与 STEM 青年教师论坛、隐私法学者会议、里士满法学院教师研讨会、迈阿密大学法学院法律理论研讨会、密歇根大学法学院治理研讨会、密歇根大学人工智能与法律研讨会、Techlaw 青年学者研讨会和 We Robot 会议的慷慨反馈。我们感谢 Nathan Fuller、Abbi Lynch、Phoebe Roque、Rylee Snively 和 Angela Theodoropoulos 提供的出色研究协助。Nicholson Price 的工作得到了 Novo Nordisk 基金会 (拨款编号 NNF17SA0027784) 的支持。代表我们每个人:所有错误都是我的合著者的。
Te 学术游行.................... ... . . . . . . . . . . . . . . . . . . . . . . 4 名教职员工元帅. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 三星铜管乐团. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 名誉教授. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 文学学士学位 2021 年春季. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . 20 音乐艺术学士学位 2021 年春季. . . . . . . . . . . . . . . . . . . . . . .
经过两年的疫情,范堡罗航展重新回归,为业内人士提供了会面、做生意、交流的机会,或许最重要的是,在经历了两年前所未有的动荡之后,航展还为他们提供了激励的机会。这并不是说航空航天业已经脱离危险——目前它面临着两大劳动力挑战。第一个挑战是短期的,需要招募在疫情最严重时期裁掉的数千名员工。目前航空公司和机场的取消航班表明,将关键职能外包的“竞相压价”是愚蠢的,并将航空业推到了崩溃的边缘。当然,这并非全是他们自己造成的,在英国,政府自身的剧烈政策波动和信息传递也加剧了这种情况。随着需求回升,许多地方对新冠疫情的担忧消退,这对航空公司来说本应是一个快乐的时刻,但却迅速变成了另一个痛苦的夏天。第二个挑战更为长期,其中一些挑战(例如飞行员培训的巨大成本)早在新冠疫情之前就已存在,但疫情进一步暴露了航空业的弱点,并传递出一个信息:即使是训练有素的飞行员也难以获得工作保障。此外,过去两年,航空展的缺乏以及高校转向虚拟教育,有可能催生出“迷失的一代”年轻人,他们从未接触过飞行表演,也从未亲身体验过风洞。再加上过去两年头条新闻中关于航空旅行的恐怖报道,可能会让许多人打消从事航空业的念头。随着范堡罗航展的回归,航空业必须加倍努力,不仅要吸引那些已经离开的人,还要激励和欢迎下一代加入这个连接和塑造世界的令人惊叹的全球行业,这一点至关重要。后新冠疫情时代的航空业需要好好照照镜子,问问自己,一个社会可持续的行业是什么样子。