迈阿密,佛罗里达州(2024 年 2 月 29 日)— 5 月 25 日星期六,迈阿密市中心的菲利普和帕特里夏弗罗斯特科学博物馆将举办全新特别展览“太空之旅”,带您探索人类太空旅行的非凡条件。太空之旅为游客提供亲身实践的登舱体验,探索在太空生活和工作需要什么。这个令人振奋的特别展览使用互动展品和真实的文物让游客沉浸在太空生活的惊人方面,包括宇航员在地球上空执行任务期间面临的真正危险,以及工程师为帮助他们在太空中生存而开发的适应性。游客将了解失重状态以及长期太空生活带来的问题,玩水火箭以了解发射机制,并利用落塔发现熟悉的物体在太空失重环境中的不同行为。通过游戏、多媒体组件和互动展品,游客将了解宇航员在太空中如何吃饭、睡觉,甚至上厕所。他们将亲身体验太空工作的困难,从控制机械臂到管理有限的电源以维持生命支持系统运行,再到确定为什么戴着太空手套工作如此困难。
Nishanth M 摘要 自人类航天早期以来,太空食品技术取得了重大进步。过去,人们通常将食物冷冻干燥或辐照以延长其保质期并减少其体积,但这些方法会导致食物的味道和质地不佳。如今,太空食品通常包装在可复水的袋子中,可以在飞行中加热。然而,目前的太空食品技术仍然面临着诸多挑战,例如需要延长保质期、缺乏新鲜食材以及需要满足宇航员在长期任务期间的营养需求。未来,垂直农业和 3D 食品打印等食品生产技术的进步可能有助于改善太空食品的口感和营养价值,并使在航天器上种植新鲜农产品成为可能。此外,研究太空食物的心理影响对于保持宇航员的士气和生产力至关重要。本综述重点介绍太空食品及其技术的起源和历史、目前正在使用的方法和方法以及未来的进步和机遇。 关键词:太空食品;食品生产;食品包装;生命支持系统;冷冻干燥 引言 宇航员在太空失重状态下会吃一种特殊的食物,即“太空食品”。适当的饮食对于长期太空旅行中的社会心理至关重要,而摄入正确的营养素可以维持这种心理。膳食营养对宇航员的生命健康至关重要。太空食品应具有小巧、轻便、便于携带、能够抵御辐射、振动和低压等环境变量的有害影响等特点。太空食品在成分、储存、营养成分和食用方式方面与普通食品不同。太空环境会带来许多生理变化,如骨质流失、肌肉质量下降、免疫功能下降、肠道转运时间减慢、肠道通透性降低等,这些变化可能会影响食物的吸收。为宇航员提供足够的太空飞行食物和营养,是保证他们健康的关键。然而,在太空旅行过程中,航天员的膳食摄入可能经常不足,导致其营养状况明显下降,并引发或加剧失重环境下对人体健康的生理变化。因此,航天食品需要不断改进。太空食品的开发应遵循两个目标:一是满足航天员生存所需的生理需求;二是满足航天员在长期、艰苦的太空任务中对心理健康和享受的需求。科学技术的进步大大增加了太空食物的数量和质量。太空饮食和地球饮食之间唯一的解剖学区别就是这些。今天,宇航员可以吃一周的完全不同的美食。美国宇航员在太空中沉迷于自己的快餐文化,他们吃汉堡包、沙拉、香肠馅饼、甜点,甚至感恩节吃火鸡。国际空间站上的俄罗斯机组人员可以享用一份有 300 多种选择的菜单,每天四餐,每餐都有各种选择,包括干肉、西兰花和奶酪、冻梭子鱼猪肉、杏仁烤土豆等。日本料理在日本占主导地位,包括寿司、面条、纳豆饭、水果、咖喱牛排、海鲜、炖猪肉等。如今,宇航员可以选择的中国菜系多达 100 多种,包括鱼香肉丝、宫保鸡丁、莲子粥、蒸牛肉、粽子、八宝饭、凉茶等等。食品加工和保鲜技术的进步,促成了如此丰富多样的饮食。(Jiang et al 2019)[14] 。
Rahul Wadhwani 摘要 当前技术水平以及在开发可在太空中重新水化的太空食品方面存在的问题。这项研究侧重于创新的干燥工艺,例如真空干燥和冷冻干燥,这些工艺已被用于保存食物的营养成分和质地。本文还讨论了包装在保护食物免受太空飞行极端条件(例如辐射和微重力)影响方面的重要性。设计太空美食最具挑战性的问题之一是确保宇航员能够快速重新水化并消化食物,因为太空中缺乏水。此外,报告强调了食物必须轻巧紧凑,以减少储存和运输所需的空间和资源。本文还提供了有关冷冻干燥技术和有助于保存食物的包装的信息。总体而言,本文全面回顾了可重新水化太空食品领域的当前技术状况和问题,强调不断尝试创造新的和改进的太空飞行食品保存和包装方法。关键词:太空食品,冷冻干燥,可复水食品,保存,包装,太空食品的种类 1. 引言 太空食品是宇航员在太空中由于失重环境而食用的一种食品。膳食营养对宇航员的生命安全至关重要,不仅因为通过摄入适当的营养素可以维持正确的营养,而且因为在长期太空飞行中,适当的食物在社会心理中起着关键作用。可复水太空食品是一种专为宇航员在太空任务期间食用而设计的食品。它通常经过冷冻干燥或脱水以减轻其重量和体积,并可根据需要用水复水。未来长期的载人航天任务将从地球到月球,然后再到火星。虽然预计火星任务将需要更长的时间(800 到 1100 天),但由于大约有 500 天需要在火星表面度过,因此月球任务可能需要 20 到 30 多天(P Watkins 等人,2022 年)[30] 开发可复水太空食品的关键挑战之一是确保它营养丰富且可以安全食用,同时还要能够承受太空旅行的极端条件。这包括暴露在高水平辐射下、温度和压力变化以及长时间储存。有几种不同的食物是专门为太空旅行期间使用而准备和设计的。食物应该能够在低重力环境中轻松安全地制作、储存和食用,同时还要满足某些标准,以确保在恶劣环境下工作的个人获得充足的营养。尽管宇航员食用的食物和饮料种类繁多,但必须为他们提供含有所有必需维生素和营养素的营养配方,以确保机组人员的工作能力以及神经系统和心理韧性。 (Getsov P 等人,2020 年) [14]。航天环境会引起各种生理变化,包括骨质流失、肌肉质量下降和免疫功能受损,以及肠道运输时间延迟和胃肠蠕动减少,这可能会降低食物吸收率 (Jiahui Jiang 等人,2020 年;Sun 等人,2014 年) [18, 34]。第一次在太空中食用食物是在 1962 年,当时第一个在太空进食的美国人约翰·格伦 (John Glenn)。已经完成了各种任务以改进食品和饮料创新方法。虽然今天的宇航员在地球上享用着由世界顶级厨师烹制的高品质餐食,但未来的太空旅行将需要全新的方式在太空中种植足够的食物,为宇航员在多年的星际旅行中提供足够的卡路里和营养。因此,美国、加拿大、日本和其他国家航天局对开发