我们报告了量子计算在重夸克偶极子光谱研究中应用的首次演示。基于重夸克和反夸克系统的康奈尔势模型,我们展示了如何在 IBM 云量子计算平台上用 VQE 方法制定和解决这个汉密尔顿问题。由于全局去极化噪声通道导致的误差通过零噪声外推法进行校正,结果与预期值高度一致。我们还推广了 VQE 方法,通过相对于基态的正交化来解决激发态。这种新方法已被证明适用于无噪声量子模拟器上的夸克偶极子系统,并且可以轻松应用于解决许多其他物理系统中的类似激发态问题。
s = 7。8和13 TEV。LHCB [8]宣布发现了另外三个Tetraquark候选人X(4274),X(4500)和X(4700)。不同的作者已经提出了许多模型和方法来研究四方国家。jaffe [9]研究了Quark Bag模型框架中多Quark Hadrons Q 2 2 Q 2的光谱和主要的衰减耦合。在发现J/ Meson后,Iwasaki [10]提出了Tetraquark State T 4 C。Debastiani等。[11]在diquark-antidiquark方法和介子分子中研究了四夸克质量。Chen等。 [12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。 Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chen等。[12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Wang等。[13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。双重的tetraquark群众进行了研究。Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chakrabarti等。[19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。
寻找超对称粒子是大型强子对撞机 (LHC) 的主要目标之一。超对称顶部 (停止) 搜索在这方面发挥着非常重要的作用,但 LHC 下一个高光度阶段将达到前所未有的碰撞率,这对任何新信号与标准模型背景的分离提出了新的挑战。量子计算技术提供的大规模并行性可以为这个问题提供有效的解决方案。在本文中,我们展示了缩放量子退火机器学习方法的一种新应用,用于对停止信号与背景进行分类,并在量子退火机中实现它。我们表明,这种方法与使用主成分分析对数据进行预处理相结合,可以产生比传统多元方法更好的结果。
高能对撞机中基本粒子量子特性的测试开始出现。顶夸克和反顶夸克系统中的纠缠和贝尔不等式违反尤其令人感兴趣,因为顶夸克是经历级联衰变的不稳定粒子。我们争论顶夸克和反顶夸克在不同衰变阶段的空间分离标准。我们考虑了三个不同情况下的因果分离:顶夸克衰变、W 玻色子衰变以及轻子/喷流与宏观仪器接触时。我们表明,当要求顶夸克和 W 玻色子都在空间间隔内衰变时,事件的空间分数最小。对于通常需要贝尔不等式违反的高不变质量,这几乎与顶夸克衰变要求相同。我们还包括一个选项,用于将顶夸克衰变中的 b 夸克的角度相关性用于自旋相关性测量。我们要求顶夸克和 b 强子衰变都是空间分离的。再次,我们发现在高不变质量下,它几乎与顶夸克和反顶夸克之间的空间分离要求相同。我们为我们提出的标准提供了数值。如果满足这样的标准,则保证系统不存在因果关系。
2 +,使用相对论量子场理论中的功能方法,即量子铬动力学(QCD)。到此为止,我们通过夸克 - diquark方法将三夸克faddeev方程减少到两体方程,在该方法中,重子被视为夸克和有效的diquarks的绑定状态。这种方法已成功用于轻巧和奇怪的重子。夸克 - diquark bethe salpeter振幅(BSA)的伯特salpeter方程(BSE)量达到相互作用内核的夸克乒乓交换。使用彩虹束截断中的Alkofer-Watson-Weigel相互作用确定夸克和diquark成分。BSE是通过将其转换为特征值问题并解决Quarkdiquark BSA的狄拉克敷料功能来实现的,我们使用Chebyshev扩展进行了评估。特征值问题的矩阵与这些考虑因素以及BSE的颜色和平流结构一起构建。这种结构由包含BSE的颜色迹线和avor因子的矩阵表示,以进行不同的diquark跃迁。我们在质量网格上计算地面和激发态的特征值,在质量网格中,物理状态对应于其相应特征值等于一个的条件。结果表明,基态质量与实验的总体一致,在此我们将模型比例设置为基态质量相对于实验质量的平均比率。激发态显示出比接地状态更高的高估。三重迷人的巴里昂也同意晶格QCD结果。使用QCD的潜在模型与晶格QCD和理论计算一致。仍然需要计算双重魅力的重子。
2015 年,LHCb 合作组报告在衰变中观察到与粲偶素五夸克态一致的共振态[1]。实际上,衰变成的状态可能具有独特的特征[2]。最小夸克含量可被识别为,即粲偶素五夸克。虽然自夸克模型建立以来就预测了这种由四个夸克和一个反夸克组成的五夸克的存在[3–5],但对它的实验分析却花了很长时间。这种新粒子彻底改变了我们对于奇异状态的理解,这些状态无法包含在标准光谱学的传统夸克-反夸克和三夸克方案中。粲偶素五夸克被标记为,带电荷,并与粲偶素耦合。此外,它们是在重味重子领域观察到的第一个奇异状态。
2(1 -d cos ϕ),其中ϕ是父级顶部和反titop休息框架中的Lepton方向之间的角度。
在光子,原子,超导体,介子,模拟鹰辐射,钻石中的氮气散布中心甚至宏观钻石中观察到。
大型强子对撞机时代迷人的粲夸克、美丽的底夸克和夸克胶子等离子体 Santosh K. Das 和 Raghunath Sahoo* 宇宙通过大爆炸诞生后几微秒,原始物质被认为是物质基本成分——夸克和胶子的混合物。预计这将在实验室中通过超相对论速度下的重核碰撞产生。在美国纽约布鲁克海文国家实验室的相对论重离子对撞机和瑞士日内瓦欧洲核子研究中心的大型强子对撞机的能量和光度边界上,可以产生一种由夸克和胶子组成的等离子体,称为夸克胶子等离子体 (QGP)。重夸克,即粲夸克和底夸克,被视为表征 QGP 的新探针,因此可以表征产生的量子色动力学物质。重夸克传输系数在理解 QGP 的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克输运系数,这是现象学研究的关键因素,有助于解开不同的能量损失机制。我们对 QGP 中的重夸克拖拽和扩散系数进行了总体介绍,并讨论了它们作为探测器解开不同强子化机制以及探测非中心重离子碰撞产生的初始电磁场的潜力。从新技术发展的角度来看,未来测量的实验前景被特别强调为下一代探测器的重味。关键词:大爆炸、重离子碰撞、重味、夸克胶子等离子体。20 世纪下半叶,Murray Gell-Mann 和 George Zweig 发现了强子的夸克模型,Glashow、Salam 和 Weinberg(以及许多其他人)通过基本力的统一发现了粒子物理的标准模型,这在粒子物理学中取得了巨大的成功。基础科学在寻找物质基本成分的同时,也为粒子探测和加速器技术的发展做出了巨大贡献,产生了巨大的直接和间接的社会效益。就目前对物质成分的理解而言,我们有六夸克、六轻子、它们的反粒子和力载体。然而,在这其中,我们只遇到轻夸克(LQ)——上夸克和下夸克,以及正常核物质中的电子。其他重粒子是在宇宙射线和粒子加速器的高能相互作用中产生的。虽然这些基本粒子如夸克和轻子自由存在,但它们的性质并不相同。