由于复合结构材料对航空航天工业和林业产品工业的重要性日益增加,这些材料的各向异性特性这一主题值得特别关注。材料的各向异性当然意味着其基本机械性能在三个垂直方向上有很大差异。最近与木材一起被归入这一类别的人造材料包括玻璃纤维、金属基纤维复合材料、夹层结构和强化复合材料。在 ASTM 材料科学部的赞助下,举办了一次研讨会,讨论此类材料的增强组分的取向对各向异性复合材料机械行为的性质和影响。其中几篇论文从纯理论和数学的角度考虑了纤维介质的力学和材料正交各向异性的影响。随后的论文分别集中讨论一种特定类型的各向异性材料,借鉴最近的实验和观察结果,阐明了一些基本原理。作者均为各自领域的知名综合专家,代表了政府、私人和教育机构或实验室的各界人士。
本研究旨在利用工业废料,如发泡聚苯乙烯包装废料 (EPS) 和废旧轮胎废料,生产出一种新的复合材料。新型复合材料 RTPC(橡胶轮胎聚苯乙烯复合材料)是废旧轮胎中的橡胶颗粒作为增强材料,以及通过回收 EPS 和汽油获得的基质的混合物。在本研究中,考虑了几种基质/增强材料重量比例(25%、30% 和 35%)和几种增强材料粒度(2-3、3-4 和 4-5 毫米)。进行了物理、机械和热特性分析,以确定复合材料的密度、弯曲模量、最大应力和热导率。根据得到的结果,得到的 RTPC 材料被认为是一种密度在 500 到 600 kg/m 3 之间的轻质材料。 RTPC 材料的热特性测试还表明,RTPC 是一种绝缘材料,导热系数在 0.22 至 0.23 W/mK 之间。另一方面,三点弯曲测试表明,RTPC 材料的弯曲性能较差。RTPC 材料可用作建筑施工领域的良好隔热材料。如果 RTPC 材料的机械性能得到改善,则可将其用作夹层结构中的结构部件,用于其他应用。
摘要。通常,复杂航空航天部件的超声波检测采用喷射技术。然而,水耦合会带来压力变化、气泡、水垢、藻类和机械腐蚀等缺点。因此,最好采用非接触式技术,以避免这些缺点。空气耦合超声波技术可以通过特殊传感器结合特殊发射器和接收器技术来减少空气和固体之间的巨大声学失配。尽管进行了这些优化,但测试频率必须低于 1 MHz。已经发表的研究表明,低超声频率对于检查 CFRP 夹层部件(即使使用水耦合)是必要的。空气耦合超声波检测技术已经适用于测试 CFRP 蜂窝夹层结构。由于传感器在复杂部件的相对侧垂直对齐,因此需要十轴机器人扫描系统。本文介绍了欧洲直升机公司自 2011 年起在多瑙沃特运行的自动空气耦合机器人超声波成像系统的初步结果和细节。该项目是欧洲直升机公司德国分公司、Robo-Technology、EADS Innovation Works、Ing. Büro Dr. Hillger 和 Ostertag 之间的合作项目。
根据Holmberg等人最近的研究,重型车辆的发动机、变速箱、轮胎、辅助设备和制动器的摩擦消耗33%的燃料能量[1],汽车中的摩擦消耗28%的燃料能量[2],整个造纸厂摩擦消耗的能量占15-25%[3]。因此,人们进行了多次尝试,引入各种方法来克服摩擦。润滑被公认为减少摩擦和磨损最有效的方法之一[4]。润滑油添加剂对润滑性能有重要的影响。这些添加剂是活性成分,可以在混合过程中添加到基础油中,以增强基础油的现有性能或赋予基础油所缺乏的新特性[5-6]。在现代工业中,对机械寿命和效率的不断增长的需求刺激了对性能更好的润滑油添加剂的研究。在过去的几十年中,过渡金属二硫属化物MX 2 (M=Mo、W、Ti、V、Nb和Ta,X=S、Se) 因其独特的结构和优越的性能而引起了人们的极大关注。众所周知,过渡金属二硫属化物具有由XMX层堆叠而成的夹层结构。各层之间仅靠范德华力松散地结合,易于分裂,
2.1-1 主飞行显示布局 7 2.1-2 符号位置图 8 2.1-3 波音 727 驾驶舱 11 2.1-4 麦道 MD-80 驾驶舱 12 2.1-5 麦道 MD-11 驾驶舱 14 3.5-1 地平线的建议几何形状 30 4.2-1 单色 CRT 示意图 41 4.2-2 荫罩 CRT 的原理 43 4.2-3 特丽珑彩色 CRT 的工作原理 44 4.2-4 光束指示器 CRT 的构造 45 4.2-5穿透式荧光 CRT 的构造 46 4.2-6 CRT 的光束形成区域 47 4.2-7 磁和静电聚焦方法 48 4.2-8 光栅扫描模式 50 4.2-9 典型的 CRT 驱动电路 51 4.2-10 GaAsP LED 的相对光谱特性 55 4.2-11 LED 的示意图 56 4.2-12 相对光强与正向电流的关系 57 4.2-13 LED 光学串扰 58 4.2-14 LED 的共阳极连接 60 4.2-15液晶 64 4.2-16 TN 液晶单元的响应时间 65 4.2-17 液晶阵列的矩阵寻址 67 4.2-18 TFT 液晶显示器的横截面视图 69 · 4.2-19 TFEL 夹层结构 71 4.2-20 矩阵 EL 显示器电气模型 73 4.2-21 基本真空荧光显示器结构 75 4.2-22 AC 等离子显示面板结构 77 4.2-23 基本 HUD 组件 80
本论文中介绍的工作是在 KTH 航空和车辆工程系进行的。资金由欧洲框架计划 6、项目 ALCAS、AIP4-CT-2003-516092 和瑞典国家航空研究计划 4、项目 KEKS 提供。非常感谢财政支持。特别感谢 Alfgam AB 的 Dan Holm 使用 Xopt,以及 Galorath International 的 Keith Garland 和 Andy Langridge 使用 SEER。最后,非常感谢与萨博航空结构公司人员的合作。“为什么是瑞典?”在过去四年中,我被问过很多次。好吧,我永远不会忘记六年前我的教授向我展示波纹夹层结构时说的话。“塑料太棒了!”——丹,用特殊材料设计特殊物品的想法是我听从你的邀请并在你的指导下攻读博士学位的原因之一。你和我的联合顾问 Malin ˚ Akermo 一直是我热情、灵感和动力的源泉。回到斯德哥尔摩的另一个原因是与 Peter & Frida、Ylva、Staffian、Joakim & Sofie、Chris & Camilla、Johan & Lotta 和 M¨attu & Camilla 的友谊(按出场顺序)。感谢所有 ogl¨ombara stunder vi hade tillsammans!衷心感谢我在 KTH 的朋友和同事,特别是我的内部好友 Chris 和 Mio,以及 Ylva(他们大力支持我改进当地语言的努力)。我哥哥是苏黎世和斯德哥尔摩之间最常坐飞机的人,也是我过去几年写的许多东西的校对员。你是个好人,欢迎你加入你的“第二个”家庭!我还要感谢我的父母多年来给予我的无尽支持。谢谢你对我的信任!但首先,我要感谢 Anneke,她的爱和支持使这篇论文成为可能。我们生命中的一个篇章很快就要结束了,我期待着我们的故事继续下去——无论它在哪里!
本论文中介绍的工作是在 KTH 航空和车辆工程系进行的。资金由欧洲框架计划 6、项目 ALCAS、AIP4-CT-2003-516092 和瑞典国家航空研究计划 4、项目 KEKS 提供。非常感谢财政支持。特别感谢 Alfgam AB 的 Dan Holm 使用 Xopt,以及 Galorath International 的 Keith Garland 和 Andy Langridge 使用 SEER。最后,非常感谢与萨博航空结构公司人员的合作。“为什么是瑞典?”在过去四年中,我被问过很多次。好吧,我永远不会忘记六年前我的教授向我展示波纹夹层结构时说的话。“塑料太棒了!”——丹,用特殊材料设计特殊物品的想法是我听从你的邀请并在你的指导下攻读博士学位的原因之一。你和我的联合顾问 Malin ˚ Akermo 一直是我热情、灵感和动力的源泉。回到斯德哥尔摩的另一个原因是与 Peter & Frida、Ylva、Staffian、Joakim & Sofie、Chris & Camilla、Johan & Lotta 和 M¨attu & Camilla 的友谊(按出场顺序)。感谢所有 ogl¨ombara stunder vi hade tillsammans!衷心感谢我在 KTH 的朋友和同事,特别是我的内部好友 Chris 和 Mio,以及 Ylva(他们大力支持我改进当地语言的努力)。我哥哥是苏黎世和斯德哥尔摩之间最常坐飞机的人,也是我过去几年写的许多东西的校对员。你是个好人,欢迎你加入你的“第二个”家庭!我还要感谢我的父母多年来给予我的无尽支持。谢谢你对我的信任!但首先,我要感谢 Anneke,她的爱和支持使这篇论文成为可能。我们生命中的一个篇章很快就要结束了,我期待着我们的故事继续下去——无论它在哪里!
机械工程进展,SAGE 出版,eISSN:16878140 | ISSN:16878140 航空航天科学与技术,ELSEVIER,ISSN:1270-9638 航空航天技术与管理,ISSN 2175-9146 飞机工程与航空航天技术,EMERALD,ISSN:0002-2667 亚历山大工程杂志,ELSEVIER,ISSN / eISSN:1110-0168 / 2090-2670 运筹学年鉴,Springer,电子版 ISSN:1572-9338,印刷版 ISSN:0254-5330 阿拉伯地球科学杂志,Springer,电子版 ISSN 1866-7538,印刷版 ISSN 1866-7511 热能工程案例研究,ELSEVIER,ISSN:2214-157X CIRP 制造科学与技术,ELSEVIER,ISSN:1755-5817 并发与计算,实践与经验。Wiley。ISSN:1532-0634 室内与建筑环境,SAGE 出版物,ISSN:1420-326X,在线 ISSN:1423-0070 国际电力与能源系统杂志,ELSEVIER,ISSN:0142-0615 国际信息技术与决策杂志,ISSN(印刷版):0219-6220 | ISSN(在线):1793-6845 《国际生产研究杂志》,Taylor & Francis,印刷版 ISSN:0020-7543 在线 ISSN:1366-588X 《国际轻质材料与制造杂志》,ELSEVIER,ISSN 2588-8404 《国际设计力学与材料杂志》,Springer,电子版 ISSN 1573-8841,印刷版 ISSN 1569-1713 《计算机辅助绘图、设计与制造杂志》,中国图形学会,ISSN 1003495-1 《工程与应用科学杂志》,工程技术大学,白沙瓦,巴基斯坦 《夹层结构与材料杂志》,SAGE Publishing,eISSN:15307972 | ISSN:10996362 《超级计算杂志》,ELSEVIER,印刷版 ISSN:0920-8542,EISSN:1573-0484 《Mehran 大学工程与技术研究杂志》,ISSN / eISSN:0254-7821 / 2413-7219 《纳米技术评论》,ISSN:2191-9097 《聚合物复合材料》,WILEY,ISSN:1548-0569 《多孔介质中的传输》,Springer,电子版 ISSN 1573-1634,印刷版 ISSN 0169-3913 《无人系统》,ISSN(印刷版):2301-3850 | ISSN(在线):2301-3869
非挥发性电阻开关,也称为忆阻器 1 效应,即电场改变双端器件的电阻状态,已成为高密度信息存储、计算和可重构系统 2 – 9 开发中的一个重要概念。过去十年,非挥发性电阻开关材料(如金属氧化物和固体电解质)取得了实质性进展。长期以来,人们认为漏电流会阻止在纳米薄绝缘层中观察到这种现象。然而,最近在过渡金属二硫属化物 10, 11 和六方氮化硼 12 夹层结构(也称为原子阻断器)的二维单分子层中发现的非挥发性电阻开关推翻了这种观点,并由于尺寸缩放的好处增加了一个新的材料维度 10, 13。我们在此以单层 MoS 2 为模型系统,阐明了原子片中切换机制的起源。原子成像和光谱表明,金属取代硫空位会导致电阻发生非挥发性变化,这得到了缺陷结构和电子状态计算研究的证实。这些发现提供了对非挥发性切换的原子理解,并开辟了精确缺陷工程的新方向,精确到单个缺陷,朝着实现最小的忆阻器的方向发展,以应用于超密集存储器、神经形态计算和射频通信系统 2、3、11。通过结合扫描隧道显微镜/扫描隧道光谱 (STM/STS) 和局部传输研究,我们观察到硫空位(MoS 2 单层中的主要缺陷)在其天然形式下不起低电阻路径的作用,这与金属氧化物存储器中氧空位的影响形成鲜明对比。 然而,从底部或顶部电极迁移的金属离子(例如金离子)可以取代硫空位,产生导电的局部态密度 (LDOS),从而驱动原子片进入低阻状态。 在反向电场下去除金原子后,缺陷恢复其初始空位结构,系统返回到高阻状态。 这种导电点切换机制类似于在原子级上形成导电桥存储器 14。然而,它本质上是不同的,也是独一无二的,因为单个金属离子填充了晶格中的单个空位,而不是通过高度无序的材料形成金属桥。我们发现硫空位在 2 纳米间距处稳定,导致忆阻器密度约为每 1 个单位
在我的同事 S. Nambinarayanan 的领导下,该计划得以顺利实施。约有 40 名工程师参与了这项技术采购计划,他们来自各个领域。代表印度空间研究组织签署协议的是当时的印度空间部 (DOS) 副部长 TN Seshan,他创造了 Vikas 这个名字来取代 Viking。(Seshan 后来成为备受瞩目的印度首席选举专员。)Vikas 在梵语中的意思是“发展”,也有“开花”的意思。Vikas 也是 Vikram A. Sarabhai 的缩写。无论如何,Vikas 项目就是这样诞生的,对法国和印度都有好处。回忆 APPLE(印度首个本土地球静止通信卫星项目 APPLE 项目总监 RM Vasagam 回忆录)……APPLE 的设计和建造为夹层结构,顶部是载客的 Meteosat,底部是 CAT(Capsule Ariane Technologique)舱…………如果 APPLE 的飞行模型不能及时准备好,我们将发射存放在图卢兹的适合飞行的结构模型,该模型经过复合材料堆叠测试后才能返回印度。如果我们没有在约定的日期交付飞行模型,那将是多么遗憾?我们还必须在 ISRO 设立一个独立的安全办公室。我们第一次做了耦合载荷分析!用飞机运输固体远地点发动机并将其存放在法国,随后将其转移到库鲁,用船将印度制造的肼运到库鲁等,都是在极其困难的情况下完成的。印度航空曾是我们的承运人,但在关键时刻,我们面临着让包机来图卢兹运送航天器到库鲁的困难,因为这违反了 1975 年的洛美公约。库鲁是法国的海外领地,我们不得不求助于法航!……印法在空间技术领域的合作(萨蒂什·达万航天中心前主任 MYS Prasad)印度和法国在空间研究和空间技术应用领域的合作始于 1963 年 11 月,当时法国国家空间研究中心 (CNES) 提供的钠蒸气有效载荷通过耐克阿帕奇火箭从 Thumba 赤道火箭发射站 (TERLS) 发射。1964 年 5 月,法国国家空间研究中心和原子能部 (DAE) 签署了谅解备忘录 (MoU),从此印法在空间研究方面的合作正式开始。随后,法国国家空间研究中心向 TERLS 赠送了包括 COTAL 雷达在内的各种设备。法国国家空间研究中心还帮助与法国航空航天工业达成协议,生产火箭推进剂,并在印度获得许可生产 Centaure 火箭。法国国家空间研究中心每年还为一些印度空间研究组织的工程师和科学家提供专门培训。1972 年 4 月,印度空间研究组织 ISRO 和法国国家空间研究中心达成协议,成立联合委员会,负责启动和跟进合作项目。自 1973 年开始,ISRO-CNES 联合委员会每年定期开会,并根据发射装置、电信、遥感等各个专业领域的联合工作组的建议采取行动。