开箱即用的公平性和偏差评估突出显示了在指定的“敏感”变量中不同组的模型性能和预测的潜在差异。SAS Model Studio 的“公平性和偏差”选项卡显示性能偏差奇偶性、预测偏差奇偶性、性能偏差、预测偏差、偏差指标和偏差奇偶性指标图。SAS Viya 还提供偏差缓解功能,以在训练模型时主动减少偏差。指数梯度减少 (EGR) 算法使用一种缓解偏差的过程内方法,在训练过程中主动调整模型参数,以创建产生公平预测和分类的模型。
是制造商的替代传动系统策略。一组制造商将其计划重点放在仅限于无排放的传动系统(“一柱战略”)上。此策略的重点是电池电动卡车。一组卡车制造商正在采取另一种策略,他们同时推动电池和燃料电池传动系统(“两柱策略”)。一柱策略的代表认为,电池卡车的运营成本低,比氢气和燃料电池的总拥有成本(TCO)更高。此外,电池卡车的使用将在相对较短的时间内与传统柴油卡车实现成本奇偶性。两柱战略的代表指出了道路运输中的多种应用和使用场景。尤其是对于长途交通和国际,跨境交通,氢和燃料电池,作为合适的传动系统选择。
我们介绍了一种通用方法来准备振幅由某个已知函数给出的量子态。与现有方法不同,我们的方法不需要手工制作的可逆算术电路或量子内存负载来编码函数值。相反,我们使用模板量子特征值变换电路将低成本的正弦函数块编码转换为所需函数。我们的方法仅使用 4 个辅助量子比特(如果近似多项式具有确定奇偶性,则为 3 个),与最先进的方法相比,量子比特数减少了一个数量级,同时如果函数可以很好地用多项式或傅里叶近似表示,则使用类似数量的 Toffili 门。与黑盒方法一样,我们方法的复杂性取决于函数的“L2 范数填充分数”。我们证明了我们的方法在准备量子算法中常用的状态(例如高斯和凯泽窗口状态)方面的效率。
连续波 (cw) 光子激发电子能量损失和增益光谱 (sEELS 和 sEEGS) 用于对纳米棒天线中光激发局部表面等离子体共振 (LSPR) 模式的近场进行成像。配备纳米操作器和光纤耦合激光二极管的光学传输系统用于同时照射 (扫描) 透射电子显微镜中的等离子体纳米结构。纳米棒长度不断变化,使得 m = 1、2 和 3 LSPR 模式与激光能量共振,并测量这些模式的光激发近场光谱和图像。还研究了各种纳米棒方向以探索延迟效应。光学和电子束模拟用于合理化观察到的模式。如预期的那样,奇数模式在光学上是明亮的,并导致观察到的 sEEG 响应。 m = 2 暗模式不会产生 sEEG 响应,但是,当倾斜到延迟效应起作用时,sEEG 信号就会出现。因此,我们证明了 cw sEEGS 是成像任一奇偶性全套纳米棒等离子体模式近场的有效工具。
摘要4几乎所有在美国的机车都由由柴油5发电机提供动力的电动驱动器推动,空气污染每6年就会造成1,000多人的早期死亡。电池技术的急剧改进,加上廉价可再生电力7打开电池电力导轨的可能性。鉴于机车已经具有电动驱动器,8将其转换为电池电动电池,主要需要电池车,该电池可以直接连接到传动系统。我们检查了电池电力电池货运导轨部门的案例,10发现一辆重型电池车可以为450英里的典型机车供电,这是美国货运火车旅行的11个平均每日距离的三倍。我们发现,电池电力火车可以使用12台柴油火车以6美分/千瓦时的电力充电成本实现成本奇偶性。我们13说明了如何使用批发电价来实现这些成本。将14个机队转换为电池电力电池将删除3700万吨二氧化碳,并在20年内节省15亿美元的总部门成本,同时在极端事件中引入可解决位置特异性网格约束的238 GWH。17 18 19 20 21
量子数据访问和量子处理可以使某些经典的难处理学习任务变得可行。然而,在不久的将来,量子能力只会提供给少数人。因此,需要允许经典客户端将学习委托给不受信任的量子服务器的可靠方案,以促进广泛获得量子学习优势。基于最近引入的经典机器学习交互式证明系统框架,我们开发了一个用于经典量子学习验证的框架。我们展示了经典学习者无法有效自行解决的学习问题,但他们在与不受信任的量子证明者交互时可以有效可靠地解决这些问题。具体来说,我们考虑了具有均匀输入边际分布的不可知学习奇偶校验和傅里叶稀疏函数问题。我们提出了一种新的量子数据访问模型,我们称之为“混合叠加”量子示例,在此基础上我们为这些任务提供了有效的量子学习算法。此外,我们证明了不可知量子奇偶性和傅里叶稀疏学习可以通过仅具有随机示例或统计查询访问的经典验证器有效地验证。最后,我们展示了学习和验证中的两种一般场景,其中量子混合叠加示例不会导致样本复杂度优于经典数据。我们的结果表明,量子数据用于学习任务的潜在能力虽然不是无限的,但可以通过与不受信任的量子实体交互而被经典代理利用。
过去 20 年,我们在创建、控制和测量超导“人造原子”(量子比特)和存储在谐振器中的微波光子的量子态方面取得了令人瞩目的实验进展。除了作为研究全新领域强耦合量子电动力学的新型试验台之外,“电路 QED”还定义了一种基于集成电路的全电子量子计算机的基本架构,该集成电路的半导体被超导体取代。人造原子基于约瑟夫森隧道结,它们的尺寸相对较大(约毫米),这意味着它们与单个微波光子的耦合非常强。这种强耦合产生了非常强大的状态操纵和测量能力,包括创建极大(> 100 个光子)“猫”态和轻松测量光子数奇偶性等新量的能力。这些新功能使基于在微波光子的不同 Fock 态叠加中编码量子信息的“连续变量”量子误差校正新方案成为可能。在我们尝试构建大规模量子机时,我们面临的最大挑战是容错能力。如何用大量不完美的部件构建出一台近乎完美的机器?二战后,冯·诺依曼开始在经典计算领域探讨这个问题 [ 1 ] 。1952 年,他在加州理工学院的一系列讲座中(这些讲座于 1956 年发表 [ 2 ] ;在耶鲁大学的西利曼讲座中,他未能出席,但其手稿在他死后出版 [ 3 ] 。除了思考当时粗糙、不可靠的真空管计算机外,他还对大脑中复杂神经元网络的可靠计算能力着迷。克劳德·香农 (Claude Shannon) 也对这个问题非常感兴趣 [ 5 ] ,他的硕士论文首次证明开关和继电器电路可以执行任意布尔逻辑运算 [ 4 ] 。冯·诺依曼证明(并不十分严格),一个可由 L 个可靠门网络计算的布尔函数,也可以由 O(L log L)个不可靠门网络可靠地(即以高概率)计算。Dobrushin 和 Ortyukov [6] 严格证明了这一结果。若要进一步了解该领域,可参考 [7-10] 等相关著作。现代观点将使用不可靠设备的可靠计算问题与香农信息论 [11] 联系起来,该理论描述了如何在噪声信道上进行可靠通信。如图 1 所示,在香农信息论中,只有通信信道被视为不可靠的,输入处的编码和输出处的解码被认为是完美的。通过使用对为香农通信问题设计的代码字进行操作的电路模块并经常检查它们,不可靠的电路也可以执行可靠的计算。诀窍在于找到区分模块输出和输入差异的方法,这些差异是故意的(即由于模块正确计算了输入的预期功能)还是错误的 [ 10 ] 。除了与信息论的这种关键联系之外,与控制论也有重要的联系,如图 2 所示。量子计算机是一个动态系统,尽管噪音和错误会不断发生,我们仍试图控制它。诺伯特·维纳创立的经典控制理论处理容易出错的系统(传统上称为“工厂”,实际上可能代表汽车制造厂或化工厂)。如图 3 所示,传感器连续测量工厂的状态,控制器分析这些信息并使用它来(通过“执行器”)向工厂提供反馈,以使其稳定可靠地运行。鲁棒控制系统能够处理传感器、控制器和执行器单元也可能由不可靠的部件制成的事实。我们会发现这是一个有用的观点,但在思考量子系统的控制时,我们必须处理许多微妙的问题,因为我们知道对量子态的测量会通过测量“反向作用”(状态崩溃)扰乱状态。
其中,如果位串 s 中的 1 的个数为偶数/奇数,则该位串为奇偶校验。我们可以将 | Ψ QRC ⟩ 视为奇偶校验状态:字符串的奇偶性决定系数是 α 还是 β 。这种奇偶校验性质使其很容易根据 Z 测量值进行校正。例如,如果在最后一个量子比特上测量 Z,如果结果为 0,则我们只需保留其他 N − 1 个量子比特中的信息;如果结果为 1,则信息仍存储,但我们需要在最后应用 X 门来恢复原始量子比特。该模型的一个关键缺点是它无法根据哪怕一个 X 测量值进行校正,这会导致整个波函数崩溃。当然,已知更复杂的代码 [ 25 ] 可以同时防止 Z 和 X 错误;其中概念上最简单的是 Shor 9 量子比特代码 [ 26 ]。更实际的可能性包括表面码 [27-31],它更适合物理实现(并且容错性更强);表面码中至少需要 9 个数据量子位来保护一个逻辑量子位 [31]。在本文中,我们提出了量子重复码的另一种简单替代方案,它解决了重复码的两个缺点,同时保持了其大部分概念简单性。我们的代码由一维、空间局部、时间相关的横向场伊辛模型 (TFIM) 生成。虽然该模型因与基于马约拉纳量子计算的联系而在量子信息论中有着悠久的历史 [32-36],但在这里我们将指出一种相当不同的方法,即使用 TFIM 对量子位进行鲁棒编码。与重复码一样,我们的代码受到使用奇偶校验态的启发,可以有效地纠正 Z 测量/误差。事实上,[37-39] 中已经强调了 (随机) 横向场 Ising 模型动力学与重复代码中的量子纠错之间的联系。与依赖于 GHZ 态准备的重复代码不同,我们的奇偶校验态可以在幺正动力学下在恒定时间内准备,并且它可以得到一种可以同时纠正 Z 和 X 错误的代码。我们的代码能够在有限时间幺正动力学之后实现这种纠错奇偶校验态,这可以通过与对称保护拓扑 (SPT) 相的联系来理解 [40-42],尽管这种代码看起来比许多受凝聚态物理启发的代码要简单。我们提出的 TFIM 代码是利用量子系统控制和操控方面取得的最新进展自然实现的。尤其是里德堡原子光镊阵列,由于能够单独控制原子,已被证明是一种高度可调谐的量子应用系统 [13, 43 – 48]。此外,虽然控制原子的初始空间配置已经是一种强大的工具,但现在还可以在保持量子比特相干性的同时移动原子 [49]。这种高度的控制,在空间和时间上,光镊阵列是近期实验中实现 TFIM 码的绝佳平台。本文的其余部分安排如下:我们将在第 2 部分介绍 TFIM 码。在第 3 部分中,我们描述了传统的基于综合征的量子纠错,并展示了 TFIM 码如何在存在 Z 误差的情况下恢复重复码的更传统现象(在我们的基础上),并且还可以通过纠正 X 误差超越它。我们在第 4 部分给出了数值证据,证明 TFIM 码可以直接用于生成更高深度的码。第 5 部分描述了在超冷原子实验中实现 TFIM 码的可行性。
拓扑量子计算 (TQC) 是一种量子计算方法,旨在通过利用由非阿贝尔任意子组成的非局部自由度的拓扑属性来最小化硬件层面的退相干 [1-3]。后者是奇异的准粒子激发,具有非平凡的交换统计数据,用辫子群的多维表示来描述。非阿贝尔任意子集合嵌入在退化基态流形中,这允许非局部存储量子信息并通过编织实现幺正变换来处理它。在所有非阿贝尔任意子中,马约拉纳零能量模式 (MZM) 是最有希望用于 TQC 开发的模式 [4-8],因为它们是凝聚态系统中最可行的模式。过去十年,开创性的实验确实在多个不同平台上为它们的存在提供了强有力的证据,如近邻半导体纳米线[9-12]、磁性吸附原子链[13,14]、拓扑超导体内的涡旋[15,16]、平面约瑟夫森结[17,18]和近邻量子自旋霍尔边缘[19,20]。基于马约拉纳量子计算机的构建块是马约拉纳量子比特,由四个马约拉纳零点模型组成。通过物理编织这些马约拉纳零点模型,可以实现所有单量子比特 Clifford 门 [21-23]。这些门受到拓扑保护,因为它们的结果完全取决于 2+1 维空间中任意子绝热遵循的轨迹的拓扑。重要的是,一对 MZM 的编织可以通过多种方式实现,这些方式都等同于两个非阿贝尔任意子的物理交换 [ 24 – 30 ] 。事实上,通过考虑额外的 (混合的) 辅助马约拉纳粒子的存在,我们可以通过适当调整不同 MZM 之间的成对耦合 [ 31 , 32 ] 或通过执行顺序射影宇称测量 [ 8 , 33 – 38 ] 来进行编织。非 Clifford 操作(如 T 门)无法通过马约拉纳编织实现,并且必然依赖于没有拓扑保护的实现,并且需要额外的纠错方案(如魔法态蒸馏)[ 23 , 39 ] 。为了实现通用量子计算,单量子比特门必须补充纠缠门,如 CNOT 门。遗憾的是,这种两量子比特 Clifford 门无法在可扩展架构中仅通过马约拉纳编织操作实现 [22, 40]。基于测量的方法使我们能够克服这个问题,通过对(联合)马约拉纳奇偶性进行高保真投影测量来实现 CNOT 门 [8, 35, 41 – 44]。然而,尽管基于测量的 TQC 已被证明对未来开发完全可扩展的拓扑量子计算机非常有价值,但所需的测量协议仍然是一项艰巨的挑战 [35,45,46]。因此,目前,最好设计和描述替代方案,这些方案不依赖于高保真测量,但仍允许稳健地纠缠不同的拓扑量子位。在这项工作中,我们提出了一种基于完整方法的 CNOT 门的无测量实现。完整量子计算的关键思想是利用非阿贝尔几何相在底层哈密顿量的退化特征空间上实现幺正运算 [47]。当系统参数沿着参数空间中保持退化的闭环进行调整时,就会出现这些规范不变相。这种方法相当通用,已经在非拓扑量子计算方案中成功运用 [47-49]。因此,在 TQC 中使用完整技术也很有意义。事实上,马约拉纳粒子的编织过程本身可以解释为一个完整的过程,其中系统遵循成对马约拉纳粒子耦合的三维参数空间中特定的、拓扑保护的环路 [8, 31]。完整的编织描述的优点是它可以很容易地推广,既可以通过考虑具有不同拓扑结构的环路来实现,也可以通过考虑具有不同拓扑结构的环路来实现。